Высокочастотный индуктор. Индукционный способ нагрева

Индукционный нагрев - это процесс, который используется для нагрева металлов или иных проводящих материалов. Для многих современных производственных процессов индукционный нагрев предлагает достаточное сочетание скорости, последовательности и контроля процесса.

Основные принципы индукционного нагрева применяются с 1920 года. Во время второй мировой войны технология быстро развивается в связи с военными потребностями для быстрого и надежного процесса упрочнения металлических частей двигателей.

В наиболее распространенных методах используется факел или открытое пламя непосредственно применяемое к металлической части. Но при индукционном нагреве тепло фактически «индуцируется» в пределах циркулирующего электрического тока.

Индукционный нагрев опирается на уникальные характеристики радиочастотной энергии — это часть электромагнитного спектра ниже инфракрасной и микроволновой энергии. Так как тепло передается в продукт через электромагнитные волны, оно никогда не вступает в непосредственный контакт с пламенем. При этом нет никакого загрязнения продукта, а этот процесс становится очень повторяемым и контролируемым.

Как работает индукционный нагрев

Как происходит индукционный нагрев?

Когда к трансформатору прикладывается переменный электрический ток, создается переменное магнитное поле. Согласно закону Фарадея, если вторичная обмотка трансформатора находится в магнитном поле, будет индуцирован электрический ток.

Индуктор представляет из себя трансформатор. Когда металлическая часть помещается в индуктор циркулирующие вихревые токи индуцируются в пределах детали.

Дополнительное тепло производится в магнитных частях через гистерезис – внутренние трения, которые создаются, когда магнитный материал проходит через индуктор. Материал для разогревания может быть расположен в условиях изоляции от источника питания, погружен в жидкости, охватываемые изолированные вещества в газообразных средах или даже в вакууме.

Эффективность индукционной системы нагрева зависит от нескольких факторов: конструкции индуктора, емкости блока питания, количества необходимого изменения температуры.

Характеристики нагреваемого материала

МЕТАЛЛ ИЛИ ПЛАСТИК

Во-первых, индукционным нагревом подлежат только проводящие материалы, обычно металлы. Пластмассы и других непроводящие материалы могут быть нагреты только косвенно через токопроводящие металлы находящиеся вместе с пластиком.

МАГНИТНЫЕ И НЕМАГНИТНЫЕ

Нагрев лучше у магнитных материалов. Для тепла, вызванного вихревыми токами магнитные материалы производят тепло через эффект гистерезиса. Этот эффект прекращается при температурах выше точки «Кюри» — температура, при которой магнитный материал теряет свои магнитные свойства. Относительная устойчивость магнитных материалов оценивается по шкале «проницаемостью» от 100 до 500. Хотя не магнетные материалы имеют проницаемость 1, магнитные материалы могут иметь проницаемость до 500.

ТОЛСТЫЕ ИЛИ ТОНКИЕ

На проводящих материалах около 85% эффекта нагрева происходит на поверхности материала. Интенсивность нагрева уменьшается, как расстояние от поверхности увеличивается. Так малые или тонкие части обычно греются быстрее, чем большие и толстые части, особенно если большие части необходимо нагреть полностью.

Исследования показали связь между частотой и глубиной проникновения: чем выше частота, тем меньшая глубина. Частота от 100 до 400 кГц сравнительно высоких энергий идеально подходит для быстрого разогрева мелких деталей или поверхности больших частей. Для глубокого проникновения тепла необходимы более низкие частоты от 5 до 30 кГц.

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ

Если использовать точно такой же процесс индукции и того же размера деталь из стали и меди, результаты будут совершенно разные. Почему? Сталь – наряду с углеродом, оловом и вольфрамом – имеет высокое удельное сопротивление. Потому что металлы противостоят текущему потоку. Металлы с низким удельным сопротивлением: медь, латунь и алюминий нагреются лучше. Удельное сопротивление увеличивается с температурой, поэтому очень горячий кусок стали будет более восприимчив к индукционному нагреву чем холодной кусок.

Дизайн индуктора

Дизайн и конструкция индуктора является одним из наиболее важных аспектов системы в целом. Хорошо продуманная конструкция обеспечивает надлежащее нагревание и максимизирует эффективность индукционного нагрева.

Степень изменения температуры

Наконец эффективность индукционного нагрева для конкретной детали зависит от количества необходимых изменений температуры. Для широкого спектра изменений температуры требуется больше индукционного нагрева питания.

ИНДУКЦИОННЫЙ НАГРЕВ, нагрев токопроводящих (в основном металлических) тел и ионизированных газов в результате выделения теплоты вихревыми (индукционными) токами, возбуждаемыми переменным электромагнитным полем. Обеспечивает бесконтактный способ передачи энергии от источника электромагнитного поля (индуктора) в нагреваемое тело с преобразованием её в тепловую непосредственно в теле; наиболее эффективный способ нагрева. При индукционном нагреве теплота, выделяющаяся в нагреваемом теле (по Джоуля - Ленца закону), зависит от его размеров и физических свойств, частоты и напряжённости магнитного поля. Особенностью индукционного нагрева является неравномерное распределение мощности в нагреваемом теле, обусловленное диссипацией энергии поля и затуханием электромагнитной волны. Такое затухание характеризуют эквивалентной глубиной δ э (м), т. е. глубиной поверхностного слоя плоского тела, в котором выделяется 86,5% мощности электромагнитной волны: δ э ≈ 500√p/(μ r ∙f), где р - удельное электрическое сопротивление (Ом·м), μ r - относительная магнитная проницаемость тела, f - частота изменения поля (Гц). Для индукционного нагрева используют токи разных частот - промышленной (50 Гц), повышенной (150 и 250 Гц), средней (от 0,5 до 10 кГц), высокой (67 и 440 кГц), сверхвысокой (1,76 и 5,28 МГц).

Индукционный нагрев применяют: в индукционных нагревательных установках - для нагрева заготовок под пластическую обработку (глубинный или сквозной индукционный нагрев) и деталей под химико-термическую обработку (локальный или поверхностный индукционный нагрев), в том числе под поверхностную закалку токами ВЧ; в индукционных печах - для плавки чёрных и цветных металлов и сплавов, а также зонной плавки, плавки во взвешенном состоянии, для получения низкотемпературной плазмы (смотри Плазмотрон). Индуктор (основной элемент конструкции индукционных установок и печей) создаёт переменное магнитное поле (напряжённостью 10 5 -10 6 А/м). Нагреваемый материал может быть в виде твёрдого массивного тела (в индукционных нагревательных установках), жидкого тела (в индукционных плавильных печах) и ионизированного газа (в СВЧ плазмохимических установках). Первая промышленная индукционная печь для подогрева жидкой стали (до 80 кг) в открытом горизонтальном кольцевом канале введена в эксплуатацию в Швеции в 1900 году, в СССР такие печи начали строить в 1930-х годах.

В индукционных нагревательных установках используют в основном индукторы 2 типов: проходные - круглого или квадратного поперечного сечения для нагрева заготовок по всей длине, щелевые и овального сечения для местного нагрева концов длинных заготовок (рис. 1), а также с поперечным магнитным полем (для листового материала) и замкнутым магнитопроводом (для кольцевых заготовок); закалочные - одновитковые (для внешних цилиндрических поверхностей), петлевые, зигзагообразные и в виде плоской спирали (для плоских поверхностей), кольцевые соленоидные (для внутренних цилиндрических поверхностей). Через отверстия в индукторе или с помощью спрейерного устройства на поверхность закаливаемой детали подают охлаждающую жидкость (воду, масло, различные эмульсии).

Индукционные плавильные печи могут быть канальными, работающими на промышленной частоте, вместимостью до 150 тонн и мощностью до 4,0 MBA, и тигельными - вместимостью на средней частоте до 25 тонн и на промышленной частоте (при жидкой завалке) до 60 т. В канальной печи (рис. 2) температура металла в ванне (шахте) повышается за счёт теплопередачи от жидкого металла, находящегося в канале. Один или несколько вертикальных либо горизонтальных каналов (прямоугольного или круглого сечения), расположенных в огнеупорной футеровке - так называемом подовом камне, охватывают замкнутый магнитопровод с многовитковым цилиндрическим индуктором. В канале жидкий металл с более высокой температурой под действием электромагнитных сил и свободной тепловой конвекции интенсивно циркулирует, поступая через устье канала в ванну (шахту). Индукционные канальные печи применяют в основном в цветной металлургии для непрерывных технологических процессов в качестве плавильных агрегатов и миксеров.

Рис. 2. Схема индукционной канальной печи (разрез): 1 - ванна (шахта); 2- цилиндрический индуктор; 3- замкнутый магнитопровод; 4 - футеровка канала (подовый камень); 5 - вертикальный кольцевой канал; 6 - устье канала.

В тигельной печи (рис. 3) металл находится в огнеупорном тигле, расположенном внутри цилиндрического многовиткового индуктора. Отдельные разомкнутые магнитопроводы в качестве ферромагнитных экранов защищают кожух печи от создаваемых индуктором электромагнитных волн. Энергия затрачивается на нагрев металла и его интенсивное перемешивание. В тигле возникает двухконтурная циркуляция металла с образованием выпуклого мениска (высота 5-15% от глубины металла), что затрудняет создание шлакового слоя и ограничивает удельную мощность (не более 300 кВт/т). Тигельные печи взрывоопасны (из-за невысокой стойкости футеровки тигля), их оснащают сигнализатором состояния футеровки. Индукционные тигельные печи широко распространены в сталеплавильном производстве для периодической работы при переплаве легированных сталей; для плавки высококачественных сталей - вакуумные и индукционно-плазменные печи, для выплавки особо чистых металлов и сплавов - печи с водоохлаждаемым («холодным») тиглем в виде электроизолированных секций-труб (так называемый секционированный тигель).

Рис. 3. Схема индукционной тигельной печи (разрез): 1 - тигель; 2 - цилиндрический индуктор; 3 - ферромагнитный экран; 4 - кожух; 5 - сигнализатор состояния футеровки тигля; стрелки - траектория движения жидкого металла.

Лит.: Вайнберг А. М. Индукционные плавильные печи. М., 1967; Теплотехника металлургического производства. М., 2002. Т. 1: Теоретические основы. Т. 2: Конструкции и работа печей; Индукционные тигельные печи. 2-е изд. Екатеринбург, 2002.

Описание метода

Индукционный нагрев - это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно - это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор , представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор , в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Формула для вычисления глубины скин-слоя в мм:

,

где μ 0 = 4π·10 −7 - магнитная постоянная Гн/м, а ρ - удельное электрическое сопротивление материала заготовки при температуре обработки.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием - этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение

  • Сверхчистая бесконтактная плавка, пайка и сварка металла.
  • Получение опытных образцов сплавов.
  • Гибка и термообработка деталей машин.
  • Ювелирное дело.
  • Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
  • Поверхностная закалка.
  • Закалка и термообработка деталей сложной формы.
  • Обеззараживание медицинского инструмента.

Преимущества

  • Высокоскоростной разогрев или плавление любого электропроводящего материала.
  • Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.
  • Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева - эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал - металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.
  • За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе - так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).
  • Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.
  • Удобство эксплуатации за счёт небольшого размера индуктора .
  • Индуктор можно изготовить особой формы - это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.
  • Легко провести местный и избирательный нагрев.
  • Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).
  • Лёгкая автоматизация оборудования - циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Недостатки

  • Повышенная сложность оборудования, необходим квалифицированный персонал для настройки и ремонта.
  • При плохом согласовании индуктора с заготовкой требуется бо́льшая мощность на нагрев, чем в случае применения для той же задачи ТЭНов, электрических дуг и т. п.

Установки индукционного нагрева

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах .

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:

  1. повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
  2. применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор , RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли , генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёхточки:

  1. Низкий кпд (менее 40 % при применении лампы).
  2. Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являютcя фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.
  3. При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.
  4. При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата , Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Современные твч-генераторы - это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать
а) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.
Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания - заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается - это может привести к "разносу" генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Замечания

  • Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).
  • Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).
  • При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.
  • При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка - дуги).
  • Иногда в качестве генератора высокой частоты использовали списанные мощные радиопередатчики, где антенный контур заменяли на нагревательный индуктор.

См. также

Ссылки

Литература

  • Бабат Г. И., Свенчанский А. Д. Электрические промышленные печи. - М .: Госэнергоиздат, 1948. - 332 с.
  • Бурак Я. И., Огирко И. В. Оптимальный нагрев цилиндрической оболочки с зависящими от температуры характеристиками материала // Мат. методы и физ.-мех. поля . - 1977. - В. 5. - С. 26-30.
  • Васильев А. С. Ламповые генераторы для высокочастотного нагрева. - Л. : Машиностроение, 1990. - 80 с. - (Библиотечка высокочастотника-термиста; Вып. 15). - 5300 экз. - ISBN 5-217-00923-3
  • Власов В. Ф. Курс радиотехники. - М .: Госэнергоиздат, 1962. - 928 с.
  • Изюмов Н. М., Линде Д. П. Основы радиотехники. - М .: Госэнергоиздат, 1959. - 512 с.
  • Лозинский М. Г. Промышленное применение индукционного нагрева. - М .: Изд-во АН СССР, 1948. - 471 с.
  • Применение токов высокой частоты в электротермии / Под ред. А. Е. Слухоцкого. - Л. : Машиностроение, 1968. - 340 с.
  • Слухоцкий А. Е. Индукторы. - Л. : Машиностроение, 1989. - 69 с. - (Библиотечка высокочастотника-термиста; Вып. 12). - 10 000 экз. -

Прежде чем разговаривать о принципе работы индукционного нагрева следует вообще выяснить, что же это такое. – это процесс технологичной обработки металлов под воздействием высоких температур. На производстве индукционный нагрев используется для сварки, плавки, пайки ТВЧ, закалки, ковки, деформации и термообработки. Современные предприятия по обработке металла используют индукционный нагрев, потому что он смог привлечь своими достоинствами,

среди которых хочется отметить высокую скорость работу, хорошие результаты, энергетическую эффективность оборудования, а также автоматизированный контроль над рабочим процессом.
Принципы индукционного нагрева для производственных процессов применяются примерно с 20-х годов. В период Второй мировой войны ученые старались как можно быстрее развивать новейшие технологии, чтобы использоваться их в сложившейся ситуации. Как раз во время войны возникла острая необходимость в изобретении надежного и быстрого процесса, дающего возможность получать более прочные металлические изделия.
В настоящее время ученые нацелены на поиск технологий, позволяющих производить все необходимые технологичные процессы со сбережением природных ресурсов и времени. Конечно же, повышенный контроль качества также оказал немаловажное влияние на создание оборудования, способного производить быструю, экономичную и качественную работу. На сегодняшний день индукционный нагрев активно применяется производителями на металлургических предприятиях.

Как работает индукционный нагрев

Переменный ток, подающийся от генератора электрической энергии, оказывает воздействие на первичную обмотку трансформатора, создавая мощное электромагнитное поле. Применяя на практике закон Фарадея о воздействии на вторичную обмотку, размещенную внутри образовавшегося магнитного поля, можно получить электрическую энергию.
Если рассматривать стандартную конструкцию индукционного нагревателя , то будет видно, что переменный ток проходит через индуктор (который, как правило, выполнен в виде медной катушки) и образует тепловую энергию в металлическом изделии, размещенном в индукторе. В данном случае индуктор – это первичная обмотка трансформатора, а размещенная в нем деталь – вторичная.
Электромагнитное поле, проходящее через металлическое изделие, создает в нем так называемые токи Фуко. Токи Фуко имеют направление противоположное электрическому сопротивлению металла. Тепловая энергия образуется непосредственно в металле без достижения прямого контакта между металлом и индуктором. Данный эффект принято называть «Эффектом Джоуля», так как он основан на первом законе ученого.

Индукционный нагрев - достоинства

Выше мы уже говорили о том, что масштабное применение индукционного нагрева началось не просто так, и всему причиной стали достоинства, которыми обладает индукционное оборудование. Ниже мы более подробно рассмотрим эти преимущества.
Какими же преимуществами обладает оборудование индукционного нагрева, если сравнивать его с альтернативными способами обработки металла?

  1. Высокая производительность. Индукционный нагрев позволяет повысить производительность предприятия благодаря быстрому запуску установок и нагреву изделий за короткий промежуток времени. Нагрев происходит почти мгновенно после запуска установки. Нет необходимости предварительно нагревать или охлаждать оборудование.
  2. Прочность конструкции. Тепловая энергия, как уже было рассмотрено выше, образуется непосредственно в металле, что позволяет сохранить целостность изделия. При использовании индукционного нагревателя в производстве получается минимальное количество брака. Чтобы получить максимальный эффект от обработки металла можно размещать металл в специальной вакуумной среде, защищая его тем самым от окисления.
  3. Высокая энергетическая эффективность. Индукционный нагреватель позволяет экономить электрическую энергию, используя лишь ее малое количество для образования мощного электромагнитного поля. Все ожидания после запуска установки сведены к минимуму, что так же экономит производственные ресурсы, и позволяет получить изделие с более низкой себестоимостью.
  4. Автоматизированный рабочий процесс. Благодаря программному обеспечению, установленному в индукционную установку, весь рабочий процесс может контролироваться автоматически, что дает возможность получения более точных результатов обработки.
  5. Чистая экология. Индукционный нагрев безопасен с экологической точки зрения. Во время работы индукционной установки в воздух не выделяются никакие вредные вещества, а так как открытого пламени нет, то отсутствует и задымление. Индукционный нагреватель имеет высокий уровень пожаробезопасности.

Индукционный нагрев – это отличный современный способ, позволяющий производить качественную и быструю обработку металла высокими температурами.
Задать любой интересующий вопрос, касающийся индукционного оборудования, вы можете на нашем форуме или, позвонив одному из специалистов компании, все телефоны указаны в разделе «Контакты».

Объяснить популярность индукционного нагревателя IR2153 можно тем, что человек все время находится в поисках – бесконечный поиск человеком источников тепла для обогрева своего жилья, которые будут: экономичными, экологичными и функциональными. Многие даже осмелились и не зря сделать индукционный нагреватель своими руками с целью присоединения его к отопительной системе жилища. В статье будет подробно рассказано, как это сделать индуктор обогреватель, чтобы затратить минимум денежных средств и времени.

Схема индукционного нагревателя

Из-за того, что М. Фарадей в далеком 1831 году открыл явление электромагнитной индукции, мир увидел большое количество приспособлений, которые греют воду и прочие среды.

Потому как было реализовано данное открытие люди ежедневно используют в быту :

  • Электрочайник с дисковым нагревателем для нагрева воды;
  • Печь мультиварка;
  • Индукционная варочная панель;
  • Микроволновки (плита);
  • Калорифер;
  • Нагревательная колонка.

Также открытие применяется для экструдера (не механический). Раньше оно широко применялось в металлургии и прочих отраслях промышленности, связанной с обработкой металла. Заводской индуктивный котел функционирует по принципу действия вихревых токов на специальный сердечник, расположенный во внутренне части катушки. Вихревые токи Фуко поверхностные, поэтому лучше брать в качестве сердечника полую трубу из металла, сквозь которую проходит элемент теплоносителя.

Возникновение электротоков происходит из-за подачи на обмотку переменного электронапряжения, вызывающего появление переменного электрического магнитного поля, которое меняет потенциалы 50 раз/сек. при стандартной пром частоте 50 Гц.

При этом индукционная катушка Румкорфа выполнена так, что её можно подключить к электросети переменного тока напрямую. На производстве для такого нагрева применяют высокочастотные электротоки – до 1 МГц, поэтому добиться функционирования устройства при 50 Гц довольно сложно. Толщина проволоки и число обматывающих витков, которую применяет устройство, водонагреватель , рассчитано в отдельности для каждого агрегата по специальному методу под требуемую мощность тепла. Самодельный, мощный агрегат должен функционировать эффективно, быстро греть идущую по трубе воду и при этом не нагреваться.

Организации вкладывают серьезные финансы в разработку и внедрение таких продуктов, поэтому :

  • Все задачи разрешаются удачно;
  • КПД нагревательный прибор имеет 98%;
  • Функционирует без перебоев.

Кроме высочайшей эффективности не может не привлекать скорость, с которой идет нагревание идущей через сердечник среды. На рис. предложена схема функционирования индукционного водонагревателя, созданного на заводе. Такую схему имеет агрегат марки «ВИН», которые производит Ижевский завод.

Насколько долго будет работать агрегат, зависит исключительно от того, насколько герметичен корпус и не повреждена изоляции витков провода, а это довольно значительный период, по заявлению изготовителя – до 30 лет.

За все эти плюсы, которыми 100% обладает аппарат, нужно выложить немалые финансы, индукторный, магнитный водонагреватель – самый дорогой из всех видов установок для отопления. Поэтому многие мастера предпочитают собрать сверхэкономичный агрегат для отопления самостоятельно.

Делаем индукционный нагреватель своими руками

Изготовление изобретения не сложное, если есть навыки, получится сделать хорошее устройство. Самый простой агрегат, который собирают вручную, состоит из отреза трубы (пластик), внутрь которой устраиваются разные элементы (металл) чтобы создать сердечник.


Это может быть :

  • Проволока из нержавейки;
  • Скатанная шариками, рубленная небольшими кусками проволока – катанка, диаметр которой 8 мм;
  • Сверло по диаметру трубы.

С наружной стороны к ней наклеиваются палочки из стеклотекстолита, а на них нужно намотать провод толщиной 1,7 мм в изоляции. Длина провода – примерно 11 м. Затем индукционный нагреватель надо испытать, наполнив его водой и подключив, например, к индукционной варочной панели марки ORION мощность которой 2 кВт вместо штатного индуктора. Сваренный из нескольких труб из металла вихревой радиатор выступает в роли внешнего сердечника для вихревых электротоков, которые создает катушка той же панели.

В результате можно сделать следующий вывод :

  1. Мощность тепла сделанного отопительного устройства выше электромощности панели.
  2. Число и размер трубок были выбраны случайно, но создали достаточную поверхность для подачи тепла, которое возникает от вихревых токов.
  3. Данная схема водонагревателя оказалась удачной для конкретного случая, когда квартирное помещение окружено другими квартирами, которые отапливаются.

Работает прибор правильно, поэтому если есть желания, опыт и знания можно воплотить эту идею в жизнь. Для сложных моделей может понадобиться применение 3-фазного трансформатора.

Высокоточный индукционный нагрев

Такое нагревание имеет самый простой принцип, так как является бесконтактным. Высокочастотный импульсный нагрев дает возможность достигать высочайшего температурного режима, при котором возможно обрабатывать самые сложные в плавке металлы. Чтобы выполнить индукционный нагрев, нужно создать в электромагнитных полях необходимое напряжение 12В (вольт) и частоту индуктивности.

Сделать это возможно в специальном устройстве – индукторе. Питается оно электричеством от промышленной электросети в 50 Гц.

Возможно, для этого применять индивидуальные источники электропитания – преобразователи/генераторы. Наиболее простое устройство прибора малой частоты – спираль (проводник заизолированный), который может размещаться во внутренней части трубы из металла или наматываться на неё. Идущие токи греют трубку, которая, в дальнейшем, дает тепло в жилое помещение.

Использование индукционного нагрева на минимальных частотах явление не частое. Наиболее распространено обрабатывание металлов на более высокой или средней частоте. Такие приспособления отличаются тем, что магнитная волна идет на поверхность, где затухает. Энергия преобразуется в тепло. Чтобы эффект был лучше обе составные части должны иметь схожую форму. Где применяется нагрев?

Сегодня применение высокочастотного нагрева широко распространено :

  • Для плавки металлов, и их пайка бесконтактным методом;
  • Машиностроительная промышленность;
  • Ювелирное дело;
  • Создание небольших элементов (плат), которые могут быть повреждены при использовании других методик;
  • Закалка поверхностей деталей, разной конфигурации;
  • Термическая обработка деталей;
  • Медицинская практика (дезинфекция приборов/инструментов).

С помощью нагрева можно решить множество задач.

Преимущества: индукционный нагрев металла

У нагрева множество преимуществ. При помощи него, возможно, быстро нагреть и расплавить до жидкого состояния любой токопроводимый материал. Дает возможность выполнять нагревание в любой среде, которая не проводит ток, то есть плавильно-рабочую функцию.


Потому как нагревается только проводник, стенки остаются холодными. Этот вид нагрева не загрязняет окружающую среду. Если горелки на газу загрязняют воздух, то индукционный нагрев это исключает, потому как работает электромагнитное излучение. Компактные размеры индуктора. Возможность создания устройства любой формы.

Нагрев незаменим, если нужно нагреть только выбранную область на поверхности. Также устройство настроить такое спецоборудование на требуемый режим и отрегулировать его.

Как сделать индукционный нагреватель из компьютерного блока питания

Нагреватель можно сделать из компьютерного блока питания.

Понадобится :

  • Дроссель от компьютерного блока;
  • Паяльник;
  • Сварочный аппарат;
  • Кусачки;
  • Проволока из нержавеющей стали 6 мм;
  • Эмалированный плоский медный провод 2 мм;
  • Трубы из стали 25 мм;
  • Труба из пластика 50 мм;
  • Прочная сантехническая фурнитура;
  • Взрывной клапан;
  • Детали для сборки схемы.

Состоит котел из катушки, теплообменника, клеммной коробки, шкафа управления, входного и выходного патрубков. Установка простая, главное действовать по схеме. Хороший лабораторный блок питания можно разработать за день и реализовать тоже за день. Подключаются устройства через трансформаторный пункт.

Простой индуктор своими руками

В домашнем быту часто может пригодиться индуктор ТВЧ.

Это устройство часто используют для нагревания прикипевших :

  • Гаек/болтов;
  • Рамок и балок авто;
  • Деталей для автосервиса, включая подшипники и разнообразные втулки.

Такие приборы можно купить в специализированном магазине, так же, как и любое другое оборудование, например, инверторный китайский кондиционер, сейсмодатчик, но стоят они очень дорого. Однако выход есть, вполне реально создать индукционный нагреватель дома. Для сборки потребуется трансформатор, его возможно сделать из 2-х колец. Марку феррита можно применить М 2000 НМ.

В первичной обмотке должно присутствовать примерно 26 витков провода диаметр, которого 0,75 мм. Первичная обмотка присоединяется там, где выходит инвертор. Вторую обмотку составляет одна петля из медной трубки диаметра 6 мм, она же является и отводом индуктора-трубки, которая проходит через центр кольцевой части трансформатора.

Сам индуктор представляет из себя катушку из нескольких витков трубки из меди – 4 мм.

Конденсатор вместе с устройством выполняет работу контура колебаний, создающего частоту резонанс (резонансный), на которую настроен инвертор. Если в центральной части медной спирали устроить заготовку, то она будет обеспечивать активное сопротивление. В самой катушке возникают ТВЧ, поэтому трубка с витками очень сильно нагревается, а значит, её необходимо в обязательном порядке охладить, для этого возможно использовать обычную воду из трубопроводов.

Для подвода к индуктору необходимо применить диэлектрические трубки, так как в контуре развивается высокое напряжение. За проточной водой, что охлаждает индуктор, нужен постоянный контроль, поэтому в слив устраивается специальная вставка, к которой крепятся термопара и тестер, чтобы контролировать температурный режим. В устройстве следует использовать мощнейший конденсатор, его можно собрать из сорока высоковольтных конденсаторов на 0,033 мкФ каждый.

Индукционный нагреватель своими руками (видео)

Как видите сделать индуктор своими руками несложно, главное следовать схеме, также можно создать индукционный горн или собрать схему на тиристорах или любую другую, к примеру, внутреннее содержимое транзистора.



Статьи по теме: