Выбор оптимальной стратегии ремонта и замены оборудования. Современные стратегии тоир

Система «Галактика ЕАМ» предназначена для автоматизированного управления производственными фондами предприятия. В основу системы «Галактика ЕАМ» заложены принципы современных методологий и стратегий обслуживания оборудования для эффективного их применения при ведении бизнеса.

Применение передовых методологий и стратегий в программах ТОиР увеличивает эффективность использования производственных активов. Обеспечить работоспособность оборудования с минимальными затратами – это всегда актуальная задача, решение которой обеспечит поддержание конкурентоспособности предприятия.

Создание программы ТОиР оборудования осуществляется на основе принятия решений по следующим показателям:

  • Организация ремонтного обеспечения производства;
  • Оценка эффективности ремонтного обеспечения производства;
  • Выбор стратегии ремонтов и технического обслуживания оборудования.

Организация ремонтного обеспечения производства определяет структуру ремонтной службы (РС) предприятия, что оказывает непосредственное влияние на эффективность программы ТОиР.

Классические способы организации РС характеризуются диапазоном моделей от децентрализованной к централизованной, которые отличаются способом управления ресурсами в рамках единой структуры на предприятии:

Децентрализованная РС – это распределение ресурсов РС между производственными подразделениями предприятия.

Централизованная РС – это структура предприятия, которая выполняет весь объём ремонтных работ и отвечает за работоспособность оборудования производственных и вспомогательных цехов.

Смешанная РС – это способ построения РС на основе широкого диапазона промежуточных моделей, которые отличаются различной степенью централизации.

Наиболее эффективной является централизованная модель ТОиР. Также эффективно использовать программы ТОиР, построенные на основе альтернативных способов организации РС.

Альтернативные способы организации РС направлены на привлечение внешних ресурсов для выполнения ремонтов оборудования. Альтернативные способы исполнения работ по ТОиР разделяют на подрядный и сервисный:

Совместное использование классических и альтернативных способов организации ремонтов позволяет обеспечить бо́льшую результативность ТОиР.

Под стратегией ТОиР понимается принятая на предприятии последовательность действий, которая приводит к достижению намеченных целей благодаря координированию и распределению имеющихся ресурсов. По сути, стратегия ТОиР – это определенные правила обслуживания оборудования, соблюдение которых позволяет добиться оптимальной работоспособности оборудования.

Рассмотрим известные стратегии ТОиР:

Run-to-Failure (RTF) Стратегия использования до отказа - это когда ремонтные работы будут выполняться только в случае достижения критического состояния оборудования, при котором оно уже не может выполнять заданные функции, то есть теряет работоспособность. Необходимо отметить, что такой подход к эксплуатации оборудования может привести к аварийным ситуациям, серьезным поломкам с длительным устранением, а также к излишним расходам на ликвидацию последствий и потерям от остановки производства. Формирование резерва материальных ресурсов - не самое лучшее решение, т.к. замораживает оборотные средства. Объём такого резерва часто бывает завышен (например, это касается отраслей с уникальным единичным оборудованием).

Planned Preventive Maintenance (PPM) Стратегия планово-предупредительных ремонтов или ремонтов по регламенту – это технология предупредительного технического обслуживания и ремонтов исходя из статистических сведений о сроках службы оборудования. Наибольшее распространение стратегия ППР получила при плановой экономике. Эта стратегия более приемлема, чем предыдущая, так как позволяет устранить некоторые недостатки подхода к использованию оборудования до отказа. Благодаря систематическому проведению техобслуживания и ремонта и своевременной замене подвижных деталей и запчастей достигается более качественная и длительная эксплуатация оборудования. Но при этом надо отметить, что в стратегии ППР есть свой недостаток – нередко ремонтируются фактически исправные объекты, а также производится обязательная замена деталей независимо от их оставшегося ресурса. В результате этого эксплуатационные затраты становятся неоправданно высоки. К недостаткам ППР относятся также уменьшение оставшегося ресурса оборудования и возросшие риски отказа при введении в эксплуатацию отремонтированного оборудования. Стратегией ППР и сегодня пользуются на многих предприятиях, прежде всего для обслуживания ключевых стратегических объектов, остановка которых может причинить вред окружающей среде, жизни и здоровью людей.

Condition-Based Maintenance (CBM) Стратегия планирования ремонтов исходя из технического состояния (ТС) - это технология обслуживания и ремонта с применением диагностической аппаратуры для мониторинга ТС оборудования в режиме реального времени. При использовании этой стратегии благодаря постоянному мониторингу ТС риск аварийного отказа или серьезного ухудшения работоспособности оборудования минимизируется. Слоган этой стратегии можно сформулировать так: "Оборудование нужно остановить для ремонта за минуту до его предполагаемой поломки". Такой подход к планированию ремонтов уменьшает расходы на ТОиР, сводит к минимуму число непредвиденных отказов, снижает объем простоев агрегатов во время сборочно-монтажных работ. Стратегия ремонтов по ТС призвана нивелировать недостатки предварявшей ее стратегии ППР, то есть снизить количество необязательных ремонтных вмешательств и максимально использовать ресурс оборудования. Стоит оговорить, что стратегия ТОиР по ТС оборудования хороша для краткосрочного планирования ремонтов и не подходит для построения адекватных долгосрочных планов. Средства технической диагностики позволяют предупредить отказ оборудования за два-три месяца до его предполагаемого выхода из строя.

Predictive maintenance (РМ) Прогнозная или проактивная стратегия – это более продвинутый подход к ТОиР, совмещающий преимущества планирования ТОиР по ТС с преимуществами ППР. Суть проактивной стратегии - снизить скорость развития или совсем устранить неисправности, выявленные при мониторинге технического состояния оборудования.

В проактивной стратегии ТОиР ключевым моментом является оценка ТС оборудования, которая может выполняться путем: визуального осмотра, мониторинга технических параметров, контроля температур, акустической и вибрационной диагностики, различных методов обследования (магнитный, радиоволновой, ультразвуковой и проч.).

Решение о ремонте принимается, если неудовлетворительное состояние одного элемента (запчасти) оборудования начинает негативно влиять на состояние других элементов.

Применение проактивной стратегии увеличивает срок службы станков и агрегатов, исключает вторичные повреждения в связи с первичной поломкой (путем немедленной реакции на первичную поломку), сокращает общие затраты на ТОиР, снижает риск аварийного отказа оборудования, повышает коэффициент исправности оборудования.

Reliability Centered Maintenance (RCM) Стратегия обслуживания, ориентированного на надежность – планирование мероприятий, обеспечивающих бесперебойное выполнение функций любого объекта в текущих эксплуатационных условиях. На основании RCM строятся наиболее эффективные планы ТОиР, так как данная методология объединяет разработки и сильные стороны предыдущих стратегий, одновременно обеспечивая стабильность в работоспособности производственных активов с минимальными затратами на их ТОиР.

В основу методологии RCM заложены следующие цели: увеличение степени безопасности людей и окружающей среды, повышение экономической эффективности использования производственных фондов, увеличение срока службы оборудования (плюс растет его производительность), уменьшение числа отказов оборудования, качественное информационное обеспечение процессов принятия решений.

Risk-based maintenance (RBM) Стратегия обслуживания на основании оценки рисков – определяются наиболее эффективные мероприятия, обеспечивающие безопасность и надёжность оборудования (снижение рисков) с минимизацией сопутствующих затрат. Эта стратегия характеризуется оцениванием вероятности отказов. Степень важности оборудования и вероятность его выхода из строя – вот два показателя, определяющих уровень риска при эксплуатации оборудования. Исходя из уровня риска, назначаются сроки и объёмы ТОиР, расставляются приоритеты выполнения ремонтных работ. В результате таких действий повышается надёжность и безопасность производственных активов, понижаются сопутствующие затраты.

Стратегия обслуживания на основании оценки рисков приближена к концепции бережливого производства и направлена на минимизацию потерь от: непродуктивной работы оборудования, простоев, ненужных перемещений обслуживающего персонала, недостатков обеспечения ресурсами, повторных переделок ремонтных работ, нерационального использования ресурсов, неэффективного управления информацией.

Overall Equipment Effectiveness (OEE) Стратегия общей эффективности использования оборудования - предусматривает совокупный анализ ряда показателей (KPI), характеризующих разные составляющие процесса работы оборудования. Анализ этих показателей (таких как простои, замедление работы, ухудшение качества и др.) помогает контролировать и увеличивать эффективность эксплуатации оборудования.

Стратегия OEE позволит обнаружить и затем бороться с потерями и причинами неэффективности работы. Анализ может показать помимо простоев по причине поломки еще и потери, вызванные, например, некачественной настройкой оборудования, снижением его производительности или ожиданием прихода материалов. В конце концов, можно отслеживать, как существующая производительность одного объекта производственных фондов влияет на эффективность всего производства.

Данные OEE могут быть основанием для принятия стратегических решений по капвложениям: можем ли мы улучшить производительность с использованием имеющегося оборудования или же целесообразнее закупить новое.

Важной экономической проблемой является своевременное обновление устаревшего оборудования: автомобилей, станков и т.п. Старение оборудования включает физический и моральный износ, в результате чего растут затраты на ремонт и обслуживание, снижается производительность труда и ликвидная стоимость. Поэтому на каком-то этапе эксплуатация устаревшего оборудования становится менее выгодной, нежели приобретение и использование нового. Задача заключается в определении оптимальных сроков замены старого оборудования.

Критерием оптимальности является доход от эксплуатации оборудования (задача максимизации), либо суммарные затраты на эксплуатацию в течение планируемого периода (задача минимизации).

Предположим, что планируется эксплуатация оборудования в течение некоторого периода времени продолжительностью n лет. Оборудование имеет тенденцию с течением времени стареть и приносить все меньший доход (t -возраст оборудования). При этом есть возможность в начале любого года продать устаревшее оборудование за цену
, которая также зависит от возраста t , и купить новое оборудование за цену Р. Под возрастом оборудования понимается период эксплуатации оборудования после последней замены, определенный в годах. Требуется найти оптимальный план замены оборудования с тем, чтобы суммарный доход за все n лет был бы максимальным, учитывая, что к началу эксплуатации возраст оборудования составлял t 0 лет.

Исходными данными в задаче являются доход
от эксплуатации в течение одного года оборудования возрастаt лет, остаточная стоимость
, цена нового оборудованияР и начальный возраст оборудования t 0 .

При составлении динамической модели выбора оптимальной стратегии обновления оборудования процесс замены рассматривается как n -шаговый, т.е. период эксплуатации разбивается на n -шагов.

Выберем в качестве шага оптимизацию плана замены оборудования с k -го по n -й годы.

Очевидно, что доход от эксплуатации оборудования за эти годы будет зависеть от возраста оборудования к началу рассматриваемого шага, т.е. k -го года.

Поскольку процесс оптимизации ведется с последнего шага (k = n ), то на k -м шаге неизвестно, в какие годы с первого по (k - 1)должна осуществляться замена и соответственно неизвестен возраст оборудования к началу k -го года. Возраст оборудования, который определяет состояние системы, обозначим t . На величину t накладывается следующее ограничение:
.

Это выражение свидетельствует о том, что t не может превышать возраста оборудования за (k -1)-й год его эксплуатации с учетом возраста к началу первого года, который составляет лет; и не может быть меньше единицы (этот возраст оборудование будет иметь к началу k -го года, если замена его произошла вначале предыдущего (k -1)-го года).

Таким образом, переменная t в данной задаче является переменной состояния системы на k -м шаге.

Переменной управления на k -м шаге является логическая переменная, которая может принимать одно из двух значений: сохранить (С) или заменить (З) оборудование в начале k -го года:

Функцию Беллмана
определяют как максимально возможный доход от эксплуатации оборудования за годы с k -го по n -й, если к началу k -го возраст оборудования составлял t лет. Применяя то или иное управление, система переходит в новое состояние.

Так, например, если в начале k -го года оборудование сохраняется, то к началу (k +1)-го года его возраст увеличится на единицу (состояние системы станет t + 1), в случае замены старого оборудования новое достигнет к началу (k +1)-го года возраста
год.

На этой основе можно записать уравнение, которое позволяет рекуррентно вычислить функции Беллмана, опираясь на результаты предыдущего шага. Для каждого варианта управления доход определяется как сумма двух слагаемых – непосредственного результата управления и его последствий.

Если в начале каждого года сохраняется оборудование, возраст которого t лет, то доход за этот год составит
. К началу (k +1)-го года возраст оборудования достигнет (t + 1)и максимально возможный доход за оставшиеся годы (с (k + 1)-го по n -й) составит
. Если в начале k -го года принято решение о замене оборудования, то продается старое оборудование возраста t лет по цене
, приобретается новое заР единиц, а эксплуатация его в течение k -го года нового оборудования принесет прибыль
. К началу следующего года возраст оборудования составит 1 год и за все оставшиеся годы с (k + 1)-го по n -й максимально возможный доход будет
. Из двух возможных вариантов управления выбирается тот, который приносит максимальный доход. Таким образом, уравнение Беллмана на каждом шаге управления имеет вид

Функция
вычисляется на каждом шаге управления для всех
.

Управление, при котором достигается максимум дохода, является оптимальным .

Для первого шага условной оптимизации при k = n функция представляет собой доход за последний n -й год:

Значения функции
, определяемые
,
вплоть до
.
, представляют собой возможные доходы за все годы. Максимум дохода достигается при некотором управлении, применяя которое на первом году, мы определяем возраст оборудования к началу второго года. Для данного возраста оборудования выбирается управление, при котором достигается максимум дохода за годы со второго поn -й и т. д. В результате на этапе безусловной оптимизации определяются годы, в начале которых следует произвести замену оборудования.

Пример. Найти оптимальную стратегию эксплуатации оборудования на период продолжительностью 6 лет, если годовой доход
и остаточная стоимость
в зависимости от возраста заданы в таблице 1, стоимость нового оборудования равнаР =13, а возраст оборудования к началу эксплуатационного периода составлял 1 год.

Таблица 1.

Одной из важных экономических проблем является определение оптимальной стратегии замены старых станков, aipcraTOB и машин на новые. Старение оборудования означает его физический и моральный износ, в результате чего увеличиваются затраты на ремонт и обслуживание, возрастают производственные затраты по выпуску продукции, снижаются

производительность и ликвидная стоимость. Наступает время, когда старое оборудование выгоднее продать, заменить новым, чем эксплуатировать ценой больших затрат; причем его можно заменить новым оборудованием того же вида или новым, более совершенным. Оптимальная стратегия замены оборудования состоит в определении ее оптимальных сроков. Критерием оптимальности при этом может служить прибыль от эксплуатации оборудования, которую следует оптимизировать, или суммарные затраты на эксплуатацию в течение рассматриваемого промежутка времени, подлежащие минимизации.

Введем обозначения:

r(t) - ежегодные затраты на обслуживание оборудования возраста t лег;

g(t) - остаточная стоимость оборудования возраста t лег;

Р 0 - покупная цена оборудования.

Рассмотрим период N лет, в пределах которого требуется определить оптимальный цикл замены оборудования.

Обозначим через Л*(/) - оптимальные затраты, получаемые от

оборудования возраста t лет за оставшиеся N лет цикла использования оборудования при условии оптимальной стратегии.

Возраст оборудования отсчитывается в направлении течения процесса. Так, / = 0 соответствует случаю использования нового оборудования. На каждом этапе /V-стадийного процесса должно быть принято решение о сохранении, замене или проведении ремонта оборудования. Выбранный вариант должен обеспечивать получение минимизации суммарных затрат на эксплуатацию в течение рассматриваемого промежутка времени.

Предполагается, что переход от работы на оборудовании возраста t лег к работе на новом оборудовании совершается мгновенно, то есть замена старого оборудования и переход к работе на новом оборудовании укладываются в один период.

Пример 4.2

Оборудование эксплуатируется в течение пяти лет и после этого продается. В начале каждого года можно принять решение о сохранении оборудования или его замене новым. Стоимость нового оборудования Р 0 = 4000 руб. После t лет эксплуатации (1 g(t) = Р 0 2~‘ руб. (ликвидная стоимость). Затраты на содержание в течение года зависят от возраста оборудования t и равны r(t) = 600(/ + 1).

Определить оптимальную стратегию эксплуатации оборудования, чтобы суммарные затраты с учетом начальной покупки и заключительной продажи были минимальными.

Решение. Способ деления управления на шаги естественный - но годам, п = 5. Параметр состояния - возраст машины лу= t, ,v 0 = 0 - машина новая в начале первого года эксплуатации. Управление на каждом шаге зависит от двух переменных If и If.

Уравнения состояний зависят от управления:

Показатель эффективности А"-го шага:

(при If затраты только на эксплуатацию машины возраста t, при If машина продается (-4000 2~"), покупается новая (4000) и эксплуатируется в течение первого года (600), общие затраты равны (-4000 2 " + 4000 + 600)).

Пусть л’ (?) - условные оптимальные затраты на эксплуатацию машины, начиная с А"-го шага до конца, при условии, что к началу А"-го шага машина имеет возраст / лег. Запишем для функций Л"(г) уравнения Веллмана, заменив задачу максимизации задачей минимизации:

Величина 4000 2 0+11 - стоимость машины возраста t лет (по условию машина после пяти лет эксплуатации продается):

Из определения функций Л* (/) следует A min = Л*(0).

Представим геометрическое решение этой задачи. Отложим по оси абсцисс номер шага к, а по оси ординат - возраст машины /. Точка (к - 1, /) на плоскости соответствует началу А - -го года эксплуатации машины возраста / лет. Перемещение на графике в зависимости от принятого управления на /о-м шаге показано на рис. 4.3.


Рис. 4.3

Состояние начала эксплуатации машины соответствует точке,v‘(0, 0), конец - точкам.5(5,/). Любая траектория, переводящая точку ДА-1, /) из в.5, состоит из отрезков - шагов, соответствующих годам эксплуатации. Необходимо выбрать такую траекторию, при которой затраты на эксплуатацию машины окажутся минимальными.

Над каждым отрезком, соединяющим точки (А’ - 1, /) и (А, / + 1), записываются соответствующие управлению If затраты (600(/ + 1)), а над отрезком, соединяющим точки - 1, /) и (к , /), - затраты, соответствующие управлению If (4600 - 4000 2 "). Таким образом размещаются все отрезки, соединяющие точки на 1рафикс, соответствующие переходам из любого состояния лд_| в состояние s k (см. рис. 4.3).

Далее на размеченном фафе производится условная оптимизация. В состояниях (5, /) машина продается, условный оптимальный доход от продажи равен 4000 2~‘, но поскольку целевая функция связана с затратами, то в кружках точек (5, /) ставится величина дохода со знаком минус. Далее на последующих этапах выбираются минимальные затраты среди двух возможных переходов, записываются в кружок данной точки, а соответствующие управления на этом шаге помечаются пунктирной стрелкой. При этом на каждом шаге трафически решаются уравнения Веллмана (рис. 4.4).

После проведения условной оптимизации получим в точке (0, 0) минимальные затраты на эксплуатацию машины в тсченШ пяти лет с последующей продажей: A min = 11 900. Далее строится оптимальная траектория, перемещаясь из точки So(0, 0) по пунктирным стрелкам в.?. Получаем набор точек: {(0, 0), (1, 1), (2, 2), (3, 1), (4, 2), (5, 3)}, который соответствует оптимальному управлению U"(u c , U‘, U U c , U c). Оптимальный режим

эксплуатации состоит в том, чтобы заменить машину новой в начале третьего года.

Таким образом, размеченный график (сеть) позволяет наглядно интерпретировать расчетную схему и решить задачу методом динамического программирования.

Модели и вычислительные процедуры динамического программирования очень гибки в смысле возможностей включения различных модификаций задачи. Например, аналогичная задача может быть рассмотрена для большого числа вариантов управления, «ремонт», «капитальный ремонт» и г.д. Все эти факторы могут быть учтены вычислительной схемой динамического программирования.

Найти оптимальную стратегию эксплуатации оборудования на период продолжительностью 6 лет, если годовой доход r(t) и остаточная стоимость S(t) в зависимости от возраста заданы в таблице, стоимость нового оборудования равна P = 10 , а возраст оборудования к началу эксплуатационного периода составлял 1 год.

T 0 1 2 3 4 5 6
r(t) 8 8 7 7 6 6 5
S(t) 10 7 6 5 4 3 2

Решение находим с помощью калькулятора .
I этап. Условная оптимизация (k = 6,5,4,3,2,1).
Переменной управления на k-м шаге является логическая переменная, которая может принимать одно из двух значений: сохранить (С) или заменить (З) оборудование в начале k-го года.
1-й шаг: k = 6. Для 1-го шага возможные состояния системы t = 1,2,3,4,5,6, а функциональные уравнения имеют вид:
F 6 (t) = max(r(t), (C); S(t) - P + r(0), (З))
F 6 (1) = max(8 ; 7 - 10 + 8) = 8 (C)
F 6 (2) = max(7 ; 6 - 10 + 8) = 7 (C)
F 6 (3) = max(7 ; 5 - 10 + 8) = 7 (C)
F 6 (4) = max(6 ; 4 - 10 + 8) = 6 (C)
F 6 (5) = max(6 ; 3 - 10 + 8) = 6 (C)
F 6 (6) = max(5 ; 2 - 10 + 8) = 5 (C)
2-й шаг: k = 5. Для 2-го шага возможные состояния системы t = 1,2,3,4,5, а функциональные уравнения имеют вид:
F 5 (t) = max(r(t) + F 6 (t+1) ; S(t) - P + r(0) + F 6 (1))
F 5 (1) = max(8 + 7 ; 7 - 10 + 8 + 8) = 15 (C)
F 5 (2) = max(7 + 7 ; 6 - 10 + 8 + 8) = 14 (C)
F 5 (3) = max(7 + 6 ; 5 - 10 + 8 + 8) = 13 (C)
F 5 (4) = max(6 + 6 ; 4 - 10 + 8 + 8) = 12 (C)
F 5 (5) = max(6 + 5 ; 3 - 10 + 8 + 8) = 11 (C)
3-й шаг: k = 4. Для 3-го шага возможные состояния системы t = 1,2,3,4, а функциональные уравнения имеют вид:
F 4 (t) = max(r(t) + F 5 (t+1) ; S(t) - P + r(0) + F 5 (1))
F 4 (1) = max(8 + 14 ; 7 - 10 + 8 + 15) = 22 (C)
F 4 (2) = max(7 + 13 ; 6 - 10 + 8 + 15) = 20 (C)
F 4 (3) = max(7 + 12 ; 5 - 10 + 8 + 15) = 19 (C)
F 4 (4) = max(6 + 11 ; 4 - 10 + 8 + 15) = 17 (C/ З)
4-й шаг: k = 3. Для 4-го шага возможные состояния системы t = 1,2,3, а функциональные уравнения имеют вид:
F 3 (t) = max(r(t) + F 4 (t+1) ; S(t) - P + r(0) + F 4 (1))
F 3 (1) = max(8 + 20 ; 7 - 10 + 8 + 22) = 28 (C)
F 3 (2) = max(7 + 19 ; 6 - 10 + 8 + 22) = 26 (C/ З)
F 3 (3) = max(7 + 17 ; 5 - 10 + 8 + 22) = 25 (З)
5-й шаг: k = 2. Для 5-го шага возможные состояния системы t = 1,2, а функциональные уравнения имеют вид:
F 2 (t) = max(r(t) + F 3 (t+1) ; S(t) - P + r(0) + F 3 (1))
F 2 (1) = max(8 + 26 ; 7 - 10 + 8 + 28) = 34 (C)
F 2 (2) = max(7 + 25 ; 6 - 10 + 8 + 28) = 32 (C/ З)
6-й шаг: k = 1. Для 6-го шага возможные состояния системы t = 1, а функциональные уравнения имеют вид:
F 1 (t) = max(r(t) + F 2 (t+1) ; S(t) - P + r(0) + F 2 (1))
F 1 (1) = max(8 + 32 ; 7 - 10 + 8 + 34) = 40 (C)
Результаты вычислений по уравнениям Беллмана F k (t) приведены в таблице, в которой k - год эксплуатации, а t - возраст оборудования.

k / t 1 2 3 4 5 6
1 40 0 0 0 0 0
2 34 32 0 0 0 0
3 28 26 25 0 0 0
4 22 20 19 17 0 0
5 15 14 13 12 11 0
6 8 7 7 6 6 5

В таблице выделено значение функции, соответствующее состоянию (З) - замена оборудования.

II этап. Безусловная оптимизация (k = 6,5,4,3,2,1)
Безусловная оптимизация начинается с шага при k = 1. Максимальной возможный доход от эксплуатации оборудования за годы с 1-го по 7-й составляет F 1 (1) = 40. Этот оптимальный выигрыш достигается, если на первом году не производить замены оборудования.
К началу 2-го года возраст оборудования увеличится на единицу и составит: t 2 = t 1 + 1 = 1 + 1 = 2.
Безусловное оптимальное управление при k = 2, x 2 (2) = (C/З), т.е. для получения максимума прибыли за оставшиеся годы необходимо в этом году провести замену оборудования.
К началу 3-го года возраст оборудования увеличится на единицу и составит: t 3 = t 2 + 1 = 0 + 1 = 1.
Оптимальное управление при k = 3, x 3 (1) = (C), т.е. максимум дохода за годы с 3-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 4-го года возраст оборудования увеличится на единицу и составит: t 4 = t 3 + 1 = 1 + 1 = 2.
Оптимальное управление при k = 4, x 4 (2) = (C), т.е. максимум дохода за годы с 4-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 5-го года возраст оборудования увеличится на единицу и составит: t 5 = t 4 + 1 = 2 + 1 = 3.
Оптимальное управление при k = 5, x 5 (3) = (C), т.е. максимум дохода за годы с 5-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 6-го года возраст оборудования увеличится на единицу и составит: t 6 = t 5 + 1 = 3 + 1 = 4.
Оптимальное управление при k = 6, x 6 (4) = (C), т.е. максимум дохода за 6-ой год достигается, если оборудование сохраняется, т.е. не заменяется.

Таким образом, за 6 лет эксплуатации оборудования замену надо произвести в начале 2-го года эксплуатации.

Известно, что оборудова­ние со временем изнашивается, стареет физически и морально. В процес­се эксплуатации, как правило, падает его производительность и растут эксплуатационные расходы на текущий ремонт. Со временем возникает необходимость замены оборудования, так как его дальнейшая эксплуата­ция обходится дороже, чем ремонт. Отсюда задача о замене может быть сформулирована так. В процессе работы оборудование дает ежегодно прибыль, требует эксплуатационных затрат и имеет остаточную стои­мость. Эти характеристики зависят от возраста оборудования. В любом году оборудование можно сохранить, продать по остаточной цене и при­обрести новое. В случае сохранения оборудования возрастают эксплуата­ционные расходы и снижается производительность. При замене нужны значительные дополнительные капитальные вложения. Задача состоит в определении оптимальной стратегии замен в плановом периоде, с тем чтобы суммарная прибыль за этот период была максимальной.

Для количественной формулировки задачи введем следующие обо­значения: r(t) - стоимость продукции, производимой за год на единице оборудования возраста t лет; u(t) - расходы, связанные с эксплуатацией этого оборудования; s(t) - остаточная стоимость оборудования возраста t лет; р - покупная цена оборудования; Т - продолжительность плано­вого периода; t = 0,1, 2,... , Т - номер текущего года.

Решение. Чтобы решить задачу, применим принцип оптимально­сти Р. Беллмана. Рассмотрим интервалы (годы) планового периода в по­следовательности от конца к началу. Введем функцию условно-опти­мальных значений функции цели Fk(t). Эта функция показывает мак­симальную прибыль, получаемую от оборудования возраста t лет за по­следние к лет планового периода. Здесь возраст оборудования рассмат­ривается в направлении естественного хода времени. Например, t = 0 соответствует использованию совершенно нового оборудования. Временные же шаги процесса нумеруются в обратном порядке. Напри­мер, при к = 1 рассматривается последний год планового периода, при к = 2 - последние два года и т. д., при к = Т - последние Т лет, т. е. весь плановый период. Направления изменения t и к показаны на рисунке.

В этой задаче систему составляет оборудование. Ее состояние ха­рактеризуется возрастом. Вектор управления - это решение в момент t = = 0,1, 2,... , Т о сохранении или замене оборудования. Для нахождения оптимальной политики замен следует проанализировать, согласно прин­ципу оптимальности, процесс от конца к началу. Для этого сделаем пред­положение о состоянии оборудования на начало последнего года (k = 1). Пусть оборудование имеет возраст t лет. В начале Т-го года имеются две возможности: 1) сохранить оборудование на Т-й год, тогда прибыль за последний год составит r(t) - u(t); 2) продать оборудование по остаточ­ной стоимости и купить новое, тогда прибыль за последний год будет равна s(t) - р + г(0) - u(0), где г(0) - стоимость продукции, выпущенной на новом оборудовании за первый год его ввода; u(0) - эксплуатацион­ные расходы в этом году. Здесь целесообразно разворачивать процесс от конца к началу. Для последнего года (к = 1) оптималь­ной политикой с точки зрения всего процесса будет политика, обеспе­чивающая максимальную прибыль только за последний год. Учитывая значение прибыли при различном образе действия (замена - сохране­ние), приходим к выводу, что решение о замене оборудования возраста t лет следует принять в случае, когда прибыль от нового оборудования на последнем периоде больше, чем от старого, т.е. при условии


Итак, для последнего, года оптимальная политика и максимальная прибыль F 1 {t) находятся из условия

Пусть к = 2, т. е. рассмотрим прибыль за два последних года. Де­лаем предположение о возможном состоянии t оборудования на начало предпоследнего года. Если в начале этого года принять решение о сохранении оборудования, то к концу года будет получена прибыль r(t) - u(t). На начало последнего года оборудование перейдет в состояние t + 1, и при оптимальной политике в последнем году оно принесет прибыль, равную F 1 (t + 1). Таким образом, общая прибыль за два года составит r(t) - u(t) + F 1 (t + 1). Если же в начале предпоследнего года будет при­нято решение о замене оборудования, то прибыль за предпоследний год составит s(t)-p+r(0)-u(0). Поскольку приобретено новое оборудование, на начало последнего года оно будет в состоянии t = 1. Следовательно, общая прибыль за последние два года при оптимальной политике в по­следнем году составит

Условно-оптимальной в последние два года будет политика, достав­ляющая максимальную прибыль:

Аналогично находим выражения для условно-оптимальной прибыли за три последних года, четыре и т. д. Общее функциональное уравнение примет вид

Таким образом, разворачивая весь процесс от конца к началу, получаем, что максимальная прибыль за плановый период Т составит F T (t 0). Так как начальное состояние to известно, из выражения для F T (t 0) находим оптимальное решение в начале первого года, потом вытекающее оптимальное решение для второго года и т.д. Обратимся к чи­словому примеру.

Разработать оптимальную политику замены оборудования при усло­виях:

1) стоимость r(t) продукции, производимой с использованием обо­рудования за год, и расходы u(t), связанные с эксплуатацией оборудова­ния, заданы таблицей;

2) ликвидационная стоимость машины не зависит от ее возраста и равна 2;

3) цена нового оборудования со временем не меняется и равна 15;

4) продолжительность планового периода 12 лет.

Итак, s(t) = 2, р = 15, Т = 12.

Запишем функциональные уравнения для F 1 (t) и F к (t) при числовых значениях нашего примера:

Пользуясь выражениями (8.9), (8.10), будем последовательно вычис­лять значения максимальной прибыли F к (t) и записывать их в специаль­ную таблицу (табл. 8.4). Первую строку получим, придавая параметру t в равенстве (8.9) значения 0,1,... ,12 и используя исходные данные табл. 8.3. Например, при t = 0

Заметим, что если прибыль от нового оборудования равна прибыли от старого, то старое лучше сохранить еще на год:


Из табл. 8.3 видно, что r(t) – u(t) с ростом t убывает. Поэтому при t > 9 оптимальной будет политика замены оборудования. Чтобы раз­личать, в результате какой политики получается условно-оптимальное значение прибыли, будем эти значения (до t = 9 включительно опти­мальной является политика сохранения) разграничивать жирной лини­ей. Для заполнения второй строки табл. 8.4 используем формулу (8.10). Для к = 2 получаем

Придадим параметру t значения 0,1,2,... ,12, значения r(t) и u(t) возьмем из табл. 8.3, а значения F 1 (t + 1) - из первой строки табл. 8.4. Для третьей строки расчетную формулу получим из равенства (8.10) при к = 3:

и т. д. Заполнив табл. 8.4, данные ее используем для решения постав­ленной задачи. Эта таблица содержит много ценной информации и позволяет решать все семейство задач, в которое мы погружали исходную задачу.

Пусть, например, в начале планового периода имеем оборудование возраста 6 лет. Разработаем "политику замен" на двенадцатилетний пе­риод, доставляющую максимальную прибыль. Информация для этого имеется в табл. 8.4. Максимальная прибыль, которую можно получить за 12 лет при условии, что вначале имелось оборудование возраста 6 лет, находится в табл. 8.4 на пересечении столбца t = 6 и строки F12(t); она составляет 180 единиц.

Значение максимальной прибыли F12(6) = 180 записано справа от ломаной линии, т.е. в области "политики замены". Это значит, что для достижения в течение 12 лет максимальной прибыли в начале первого года оборудование надо заменить. В течение первого года новое обору­дование постареет на год, т.е., заменив оборудование и проработав на нем 1 год, мы за 11 лет до конца планового периода будем иметь обо­рудование возраста 1 год. Из табл. 8.4 берем F11(l) = 173. Это значе­ние располагается в области "политики сохранения", т. е. во втором году планового периода надо сохранить оборудование возраста 1 год, и, про­работав на нем год, за 10 лет до конца планового периода будем иметь оборудование возраста 2 года.

Выясняем, что значение F10(2) = 153 помещено в области сохра­нения. Работаем на оборудовании еще год. Теперь до конца планового периода осталось 9 лет, а возраст оборудования составляет 3 года. Нахо­дим F9(3) = 136. Это область сохранения. Работаем на оборудовании еще год. Его возраст становится равным 4 годам. До конца планового перио­да остается 8 лет. Определяем F8(4) = 120. Это область замен. Заменяем оборудование на новое. Проработаем на нем в течение четвертого года. Оно постареет на год. До конца планового периода останется 7 лет. На­ходим F7(l) = 113. Это область сохранения. Продолжив подобные рассу­ждения, установим, что F6(2) = 93, F5(3) = 76 расположены в области сохранения, F4(4)=60 - в области замен, F3(l) = 53, F2(2) = 33, F1(3) = 16 - в области сохранения. Разработанную политику изобразим следующей цепочкой:

Таким образом, вместо поиска оптимальной "политики замен" на плановый период в 12 лет мы погрузили исходную задачу в семейство подобных, когда период меняется от 1 до 12. Решение ведется по прин­ципу оптимальности для любого состояния системы, независимо от ее предыстории. Оптимальная "политика замен" является оптимальной на оставшееся число лет. Табл. 8.4 содержит информацию для решения и других задач. Из нее можно найти оптимальную стратегию замены оборудования с лю­бым начальным состоянием от 0 до 12 лет и на любой плановый период, не превосходящий 12 лет. Например, найдем "политику замен" на пла­новый период в 10 лет, если вначале имелось оборудование пятилетнего возраста:

Задачу о замене оборудования мы упростили. На практике же дета­лями не пренебрегают. Легко учесть, например, случай, когда остаточная стоимость оборудования s(t) зависит от времени. Может быть принято решение о замене оборудования не новым, а уже проработавшим некото­рое время. Не составляет также труда учесть возможность капитального ремонта старого оборудования. При этом в понятие "состояние" системы необходимо включить время последнего ремонта оборудования. Функция Fk(ti,t2) выражает прибыль за последние к лет планового периода при условии, что вначале имелось оборудование возраста t1, прошедшее ка­питальный ремонт после t2 лет службы. Характеристики г, s и и также будут функциями двух переменных t1 и t2.



Статьи по теме: