Резонанс: это простыми словами. Блог "домашнее лечение"

Явления резонанса связаны с периодическим колебательным движением электронов в контуре и состоят в том, что электроны в данном колебательном контуре легче всего «раскачиваются» с какой-то определенной частотой, которую мы называем резонансной. С периодическим колебательным движением мы встречаемся повсеместно. Колебания маятника, дрожание струны, движение качелей - все это примеры колебательного движения.

Для примера рассмотрим колебательную систему, изображенную на рисунке 1. Эта система, как мы увидим дальше, имеет много общего с электрическим колебательным контуром. Состоит она из пружины и массивного шара, закрепленного на стержне.

Рисунок 1. Механическая модель колебательного контура. Масса-индуктивность, гибкость-емкость, трение-сопротивление.

Если мы оттянем шар в низ от положения равновесия, то он под действием пружины немедленно устремится обратно; однако приобретя некоторую скорость шар не остановится в точке равновесия, а по инерции проскочит дальше, чем вызовет новую деформацию (сжатие) пружины. Затем этот процесс повторится в обратном направлении и т. д. Шар будет колебаться в ту и другую сторону до тех пор, пока не израсходуется на трение весь запас энергии, сообщенной пружине при отклонении шара.

Нетрудно заметить, что при колебаниях шара энергия, сообщенная системе, все время переходит из энергии деформации (сжатия и растяжения) пружины в энергию движения шара и обратно. В механике первый вид энергии называется потенциальной энергией, а второй вид - кинетической.

В то время, когда шар находится в одном из крайних положений, он на мгновение останавливается. В этот момент энергия его движения равна нулю. Зато пружина в этот момент очень сильно деформирована: или сжата или растянута; в ней, следовательно, заключено наибольшее количество энергии. В тот же момент, когда шар с наибольшей скоростью проходит через положение равновесия, он обладает наибольшей энергией, но зато энергия пружины в этот момент равна нулю, так как она не сжата и не растянута.

Отклоняя шар на различные расстояния и наблюдая каждый раз за частотой последующих свободных колебаний системы, мы заметим, что частота колебаний системы остается все время одной и той же. Иными словами, она не зависит от величины начального отклонения. Эту частоту мы будем называть собственной частотой колебаний системы.

Если бы мы имели в своем распоряжении не одну такую систему, а несколько, то мы могли бы убедиться в том, что собственная частота свободных колебаний системы уменьшается с увеличением массы шара и увеличивается с увеличением упругости, т. е. с уменьшением гибкости пружины. Эта зависимость может быть обнаружена и на более простом примере с колеблющимися струнами различной толщины и различной степени натяжения.

Если мы пожелаем раскачать шар с наименьшей затратой усилий, то мы, безусловно, постараемся, во-первых, установить строгую периодичность наших толчков, т. е. постараемся, чтобы толчки следовали друг за другом через определенное время, а во-вторых, постараемся, чтобы промежуток времени между толчками равнялся периоду собственных колебаний системы (Рисунок 2).

Рисунок 2. Механическая модель колебательного контура с незатухающими колебаниями. Частота вынужденной силы равна собсвенной частоте системы (резонанс).

Для того чтобы раскачать колебательную систему с наименьшей затратой усилий, нужно частоту вынуждающей силы сделать равной собственной частоте колебания системы. Это правило очень хорошо известно всем нам еще с детского возраста, когда мы его применяли, раскачиваясь на качелях.

Рисунок 3. Явление резонанса на примере качелей.

Итак, когда частота вынуждающей силы совпадает с собственной частотой колебаний системы, амплитуда колебаний становится наибольшей.

Таким образом, необходимо сказать, что совпадение частоты вынуждающей силы с собственной частотой колебаний системы и является резонансом .

За примерами резонанса ходить далеко не нужно. Оконное стекло, дрожащее с определенной частотой каждый раз, когда мимо проезжает трамвай или грузовая машина; дрожание струны музыкального инструмента после того, как мы прикоснулись к соседней струне, настроенной в унисон с первой, и т. п. - все это явления резонанса.

Зарядим конденсатор некоторым количеством электричества (рис.4, а) и замкнем его после этого на катушку индуктивности (рис.4, б). Конденсатор начнет немедленно разряжаться. Через катушку индуктивности потечет разрядный ток, а появление тока в катушке приведет к возникновению магнитного поля вокруг нее. При этом в катушке возникнет ЭДС самоиндукции, которая будет задерживать разряд конденсатора. Когда конденсатор разрядится, то ток в катушке не прекратится, так как он будет теперь поддерживаться ЭДС самоиндукции за счет энергии, запасенной в магнитном поле катушки во время разряда конденсатора. Этот продолжающийся ток перезарядит конденсатор в обратном направлении, т. е. та пластина, которая была прежде положительной, станет отрицательной, и наоборот (рис.4, в).

Рисунок 4. Вверху - электрические, внизу - механические.

После этого конденсатор снова начнет разряжаться, снова перезарядится (рис.4, г, д) и т. д. Колебания тока в контуре будут продолжаться до тех пор, пока вся электрическая энергия, сообщенная контуру при заряде конденсатора, не превратится в тепловую энергию. Это произойдет тем скорее, чем больше активное сопротивление контура.

Итак, разряд конденсатора через катушку индуктивности является колебательным процессом. Во время этого процесса конденсатор несколько раз заряжается и разряжается, энергия поочередно переходит из электрического поля конденсатора в магнитное поле катушки и обратно.

Рисунок 5. Колебания в колебательном контуре.

Колебания тока, имеющие место при этом разряде, носят затухающий характер (рис.6).

Рисунок 6. Затухающие колебания в контуре.

Частота колебаний при выбранных величинах емкости и индуктивности является величиной вполне определенной и называется собственной частотой контура. Собственная частота контура будет тем больше, чем меньше величины емкости и индуктивности контура.

Если в колебательный контур ввести источник переменного тока, частота которого совпадает с собственной частотой контура, то колебания в контуре достигнут наибольшей величины, т. е. будет иметь место явление резонанса.

Между электрическими и механическими колебаниями может быть проведена далеко идущая параллель.

В табл. 1 слева даны электрические величины и явления, а справа аналогичные им величины и явления из области механики применительно к нашей механической модели колебательного контура.

Аналогия электрических и механических величин
Электрические величины Механические величины
Индуктивность колебательного контура Масса шара;
Емкость колебательного контура Гибкость пружин
Активное сопротивление контура Механическое трение
Пластины конденсатора Пружины
Заряд конденсатора Деформация (сжатие и растяжение) пружин
Положительный заряд пластин Сжатие пружины
Отрицательный заряд пластины Растяжение пружины
Сила тока Скорость движения шара
Направление тока Направление движения шара
Электродвижущая сила самоиндукции Сила инерции шара
Амплитуда (наибольшее мгновенное значение тока) Амплитуда (наибольшее отклонение шара от положения равновесия)
Частота (число циклов в секунду) Частота (число колебаний в се¬кунду)
Резонанс (совпадение частоты внешней ЭДС с собственной частотой конура) Резонанс (совпадение частоты толчков вынуждающей силы с собственной частотой колебаний шара)

Различные моменты электрического колебания и соответствующие им моменты колебания нашей механической модели колебательного контура изображены на рис.4.

Резонанс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы.

Всякая мех-ая упругая система имеет собственную частоту колебаний. Если какая-либо сила выведет эту систему из равновесия, а затем перестанет действовать, то система будет некоторое время колебаться около своего положения равновесия. Частота этих колебаний и называется собственной частотой колебаний системы. Скорость её затухания зависит от упругих свойств и массы, от сил трения и не зависит от силы, вызвавшей колебания.

Если сила, выводящая мех систему из равновесия, будет меняться с частотой, равной частоте собственной частотой колебаний, то на деформацию одного периода будет накладываться деформация следующего периода и система будет раскачиваться со всё возрастающей амплитудой, теоретически до бесконечности. Естественно, что конструкция не сможет противостоять такой всё возрастающей деформации и будет разрушаться.

Совпадение частоты собственных колебаний с частотой изменения электродинамической силы называется механическим резонансом .

Полный резонанс наблюдается при точном совпадении частоты колебаний силы с частотой собственных колебаний конструкции и равных положительных и отрицательных амплитудах, частичный - при неполном совпадении частот и неравных амплитудах.

Для избежания мех резонанса необходимо, чтобы частота собственных колебаний конструкции отличалась от частоты изменения электродинамической силы. Лучше, когда частота собственных колебаний лежит ниже частоты изменения силы. Подбор требуемой частоты собственных колебаний можно производить различными способами. Для шин, например, - изменением длины свободного пролёта

В случае, когда частота переменной составляющей ЭДУ близка к собственной частоте механических колебаний, даже при сравнительно небольших усилиях возможно разрушение аппарата вследствие явлений резонанса.

Шины под воздействием ЭДУ совершают вынужденные колебания в виде стоячих волн. Если частота свободных колебаний выше 200 Гц, то расчёт усилий производится для статического режима без учёта резонанса.

Если частота свободных колебаний шины при конструировании стремятся исключить возможность резонанса за счёт выбора длины свободного пролета шины.

При гибком креплении шины собственная частота механических колебаний снижается. Энергия ЭДУ частично тратится на деформацию токоведущих частей, частично на перемещение их и связанных с ним гибких креплений. При этом мех. Напряжения в материале шин уменьшаются

Марта 02 2016

Резонанс - это резкий рост амплитуды вынужденных колебаний, который наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами колебательной системы. Увеличение амплитуды происходит при совпадении внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи резонансных явлений можно выделить и/или усилить даже совсем слабые гармонические колебания. Резонанс - явление, заключающееся в том, что колебательная система оказывается особенно отзывчивой на воздействие определённой частоты вынуждающей силы.

В нашей жизни довольно много ситуаций, в которых проявляется резонанс. Например, если к струнному музыкальному инструменту поднести звенящий камертон, то акустическая волна, исходящая от камертона, вызовет вибрацию струны настроенной на частоту камертона, и она сама зазвучит.

Еще один пример, всем известный эксперимент с тонкостенным бокалом. Если измерить частоту звука, с которой звенит бокал, и, подать звук с такой же частотой от генератора частот, но с большей амплитудой, через усилитель и динамик обратно на бокал, его стенки входят в резонанс с частотой звука идущего от динамика и начинают вибрировать. Увеличение амплитуды этого звука до определенного уровня приводит к разрушению бокала.

Биорезонанс: с Древней Руси и до наших времен

Наши православные предки, ещё за десятки тысяч лет до прихода христианства на Русь хорошо знали о силе колокольного звона и старались в каждой деревне установить колокольню! Благодаря чему в средневековье Русь, богатая церковными колоколами, избегала опустошительных эпидемий чумы в отличии от Европы (Галлии), в которой святые инквизиторы на кострах сожгли не только всех учёных и ведающих, но и все древние «еретические» книги, написанные на глаголице, хранившие уникальные знания наших предков, в том числе и о силе резонанса!

Таким образом, все православные знания, накопленные веками, были запрещены, уничтожены и подменены новой христианской верой. При этом по сей день данные о биорезонансе находятся под запретом. Даже спустя века любая информация о методах лечения, не приносящих прибыль фармацевтической промышленности, умалчивается. В то время как ежегодный многомиллиардный оборот фармацевтики растет с каждым годом.

Яркий пример применения резонансных частот на Руси, и это факт, от которого нельзя отвертеться. Когда в Москве в 1771 году (1771 г.) вспыхнула эпидемия чумы, Екатерина II отправила из Петербурга графа Орлова с четырмя лейб-гвардиями и огромным штатом врачей. Вся жизнь в Москве была парализована. Дабы отогнать «моровые поветрия» миряне окуривали жилища, на улицах разводили огромные костры, и вся Москва была окутана черным дымом, так как тогда считалось, что чума распространяется по воздуху, но это мало помогало. А ещё изо всех сил били в набат (самый большой колокол) и во все колокола меньшего размера в течении 3-х дней подряд, так как свято верили, что колокольный звон отведёт от города страшную беду. Через несколько дней эпидемия стала отступать. «В чем секрет?» - спросите Вы. На самом деле ответ лежит на поверхности.

А теперь рассмотрим небезызвестный пример использования биорезонанса в наше время. С целью соблюдения чистоты эксперимента, медики в палату с онкологическими больными поставили металлические пластины, наподобие тех, что использовались в древних монастырях, чтобы колокола у пациентов не могли ассоциироваться с церковью, и, рождаемое поневоле самовнушение, не могло существенно повлиять на результаты исследований. При подборе индивидуальных частот для каждого больного использовалось множество титановых пластин различного размера. Итог превзошел все ожидания!

После воздействия акустических волн определённой частоты на биологически активные точки пациентов у 30% больных прекратился болевой синдром, и они смогли уснуть, а ещё у 30% больных прекратились боли, не снимавшиеся самыми сильными наркотическими анестетиками!

В настоящее время, для достижения эффекта резонанса нет необходимости использовать огромные колокола, а есть уникальная возможность, применять достижения науки и техники, созданные электронные приборы на основе частотного резонанса, иными словами приборы биорезонансной терапии Smart Life.

Эффект резонанса в биологических структурах можно вызвать при помощи:

Акустических волн

Механического воздействия

Электромагнитных волн видимого и радиочастотного диапазонов

Импульсов магнитного поля

Импульсов слабого электрического тока

Импульсного теплового воздействия

То есть, эффект резонанса в биологических структурах можно вызывать внешним воздействием и любыми физическими явлениями, возникающими в процессе биохимических реакций внутри живой клетки. Причём каждая биологическая структура имеет свой уникальный частотный спектр, сопровождающий биохимические процессы и откликается на внешнее воздействие, как основной резонансной частоты, так и высших или низших гармоник от основной частоты, с амплитудой во столько раз большей, на сколько эти гармоники отстоят от частоты основного резонанса.

Как в повседневной жизни можно использовать силу резонанса, и какой же метод воздействия выбрать?

Акустические волны

Угадайте, что происходит с зубным камнем во время его удаления, при помощи ультразвука в кабинете у стоматолога или при разрушении камней в почках? Ответ очевиден. И без сомнения, акустическое воздействие - это прекрасная возможность для исцеления организма, если бы не одно «но». Колокола много весят, дорого стоят, создают сильный шум, и могут использоваться исключительно стационарно.

Магнитное поле

Чтобы вызвать хотя бы сколь-нибудь ощутимый эффект от воздействия пульсирующего магнитного поля на всё тело, необходимо изготовить электромагнит огромных размеров и массой пару тонн, он будет занимать пол комнаты и потреблять очень много электроэнергии. Инертность системы не позволит использовать его на высоких частотах. Маленькие электромагниты можно использовать лишь локально из-за малого радиуса действия. Также нужно точно знать зоны на теле и частоту воздействия. Вывод неутешителен: использовать магнитное поле для терапии заболеваний экономически не целесообразно в домашних условиях.

Электрический ток Электромагнитные волны
Для метода частотного резонанса можно использовать радиоволны с несущей частотой от 10 кГц до 300 МГц, так как в этом диапазоне самый низкий коэффициент поглощения ЭМВ нашим телом и оно для них прозрачно, а также электромагнитные волны в видимом и инфракрасном спектре. Видимый красный свет с длиной волны от 630 нм до 700 нм проникает в ткани на глубину до 10 мм, а инфракрасный свет от 800 нм до 1000 нм проникает на глубину до 40 мм и глубже, вызывая ещё и некоторое тепловое воздействие при торможении в тканях. Для воздействия на биологически активные зоны на поверхности кожи, можно использовать радиоволны с несущей частотой до ~ 50 ГГц

Как на звук и световые волны влияет принцип резонанса? Что такое вибрации и резонансные частоты объектов? Какие повседневные примеры резонанса можно встретить в жизни? Как разбить бокал с помощью голоса? Если присмотреться, то можно увидеть примеры резонанса повсюду. Вот только некоторые из них несут пользу, а другие – вред.

Что такое резонанс?

Вы когда-нибудь задумывались над тем, как люди создают прекрасную музыку с помощью обыкновенных бокалов? По мере повышения воздействия на стекло звуковыми волнами оно может даже разбиться. Световые волны также взаимодействуют особыми способами с объектами вокруг себя. Поведение звуковых и световых волн объясняет, почему люди слышат звуки музыкальных инструментов и различают цвета. Изменения волновой амплитуды вызваны важным принципом, который называется резонансом. Примерами влияния на передачу звука и света являются вибрации.

Звуковые волны происходят от механических колебаний в твердых телах, жидкостях и газах. Световые волны исходят из вибрации заряженных частиц. Объекты, заряженные частицы и механические системы обычно имеют определенную частоту, на которой они склонны вибрировать. Это называется их резонансной частотой или их собственной частотой. Некоторые объекты имеют две или более резонансных частот. Пример резонанса: когда вы едете по ухабистой дороге, и ваш автомобиль начинает прыгать вверх и вниз – это пример колебания вашей машины на своей резонансной частоте, вернее резонансная частота амортизаторов. Вы можете заметить, что когда вы едете в автобусе, частота отскока немного медленнее. Это потому, что амортизаторы шины имеют более низкую резонансную частоту.

Когда звуковая или световая волна ударяет по объекту, она уже вибрирует на определенной частоте. Если эта частота будет соответствовать резонансной частоте объекта, то это приведет к тому, что вы получите резонанс. Он возникает, когда амплитуда колебаний объекта увеличивается за счет соответствующих колебаний другого объекта. Эту связь трудно представить без примера.

Резонанс и световые волны

Взять, к примеру, типичную световую волну (это поток белого света, который исходит от солнца) и направить ее на темный объект, пусть это будет черная змея. Молекулы в коже пресмыкающегося имеют набор резонансных частот. То есть электроны в атомах стремятся вибрировать на определенных частотах. Свет, спускающийся с солнца, – белый свет, который имеет многосоставную частоту.


Сюда входят красный и зеленый, синий и желтый, оранжевый и фиолетовый. Каждая из этих частот поражает кожу змеи. И каждая частота приводит к вибрации другого электрона. Желтая частота резонирует с электронами, резонансная частота которых желтая. Синяя частота резонирует с электронами, резонансная частота которых синяя. Таким образом, кожа змеи в целом резонирует с солнечным светом. Змея кажется черной, потому что ее кожа поглощает все частоты солнечного света.

Когда световые волны резонируют с объектом, они заставляют электроны вибрировать с большими амплитудами. Световая энергия поглощается объектом, и человеческому глазу не заметно, что свет возвращается обратно. Объект выглядит черным. Что делать, если объект не поглощает солнечный свет? Что если ни один из его электронов не резонирует со световыми частотами? Если резонанс не возникает, то вы получите передачу, пропускание световых волн через объект. Стекло кажется прозрачным, потому что оно не поглощает солнечный свет.

Свет все еще вызывает вибрации электронов. Но поскольку он не соответствует резонансным частотам электронов, колебания очень малы и проходят от атома к атому через весь объект. Объект без резонанса будет иметь нулевое поглощение и 100 % передачу, например стекло или вода.


Музыка и резонанс звуковых волн

Резонанс для звука работает так же, как и для света. Когда один объект вибрирует на частоте второго объекта, тогда первый заставляет второй вибрировать с высокой амплитудой. Так возникает акустический резонанс. Примером служит игра на любом музыкальном инструменте. Акустический резонанс отвечает за музыку, создаваемую трубой, флейтой, тромбоном и многими другими инструментами. Как работает это удивительное явление? Можно привести пример резонанса, который имеет положительный эффект.

Пройдя в собор, где играет органная музыка, можно заметить, что вся стена заполнена огромными трубами всех размеров. Некоторые из них очень короткие, а другие доходят до потолка. Для чего нужны все трубы? Когда начинает играть прекрасная музыка, можно понять, что звук исходит от труб, он очень громкий и, кажется, заполняет весь собор. Как такие трубы могут звучать так громко? Во всем виноват акустический резонанс, и он не является единственным инструментом, который использует это удивительное явление.


Создание звуковых волн

Чтобы понять, что происходит, вам сначала нужно немного узнать о том, как звук проходит по воздуху. Звуковые волны создаются, когда что-то вызывает вибрацию молекул воздуха. Затем эта вибрация перемещается, как волна, наружу во всех направлениях. Когда волна проходит по воздуху, есть области, где молекулы сжимаются ближе друг к другу, и области, где молекулы вытягиваются дальше друг от друга. Расстояние между последовательными сжатиями или расширениями известно как длина волны. Частота измеряется в единицах Герца (Гц), а один Герц соответствует одной скорости сжатия волны в секунду.

Люди могут обнаруживать звуковые волны с частотами от 20 до 20 000 Гц! Однако они не все звучат одинаково. Некоторые звуки высокие и скрипучие, в то время как другие низкие и глубокие. То, что вы на самом деле слышите, – это разница в частоте. Итак, как частота относится к длине волны? Скорость звука немного меняется в зависимости от температуры воздуха, но обычно она составляет около 343 м/с. Поскольку все звуковые волны движутся с одинаковой скоростью, частота будет уменьшаться по мере увеличения длины волны и возрастать при уменьшении длины волны.


Вредный резонанс: примеры

Часто люди принимают мостостроение и безопасность как должное. Однако иногда происходят катастрофы, заставляющие поменять свою точку зрения. 1 июля 1940 года в Вашингтоне был открыт мост Такома-Нэрроуз. Это был подвесной мост, третий по величине в мире для своего времени. Во время строительства мост получил прозвище «Галопирование Герти» из-за того, как он качался и сгибался на ветру. Это волнообразное колебание в конце концов привело к его крушению. Мост рухнул 7 ноября 1940 года во время бури, всего через четыре месяца его эксплуатации. Прежде чем узнавать о резонансной частоте и о том, что это связано с катастрофой моста Такома-Нэрроуз, сначала нужно понять что-то, называемое гармоническим движением.


Когда у вас есть объект, периодически колеблющийся назад и вперед, мы говорим, что он испытывает гармоническое движение. Один прекрасный пример проявления резонанса, испытывающего гармоническое движение, – свободная подвесная пружина с прикрепленной к ней массой. Масса заставляет пружину растягиваться вниз, пока в конце концов пружина не сжимается назад, чтобы вернуться к своей первоначальной форме. Этот процесс продолжает повторяться, и мы говорим, что пружина находится в гармоническом движении. Если вы посмотрите видео с моста Такома-Нэрроуз, то увидите, что он колебался, прежде чем рухнул. Он проходил гармоническое движение, как пружина с прикрепленной к ней массой.

Резонанс и качели

Если вы один раз толкнете своего друга на качелях, они несколько раз будут совершать колебательные движения и через некоторое время остановятся. Эта частота, когда колебание самопроизвольно колеблется, называется собственной частотой. Если вы даете толчок каждый раз, когда ваш друг возвращается к вам, он будет качаться все выше и выше. Вы нажимаете с частотой, аналогичной собственной частоте, и амплитуда колебаний возрастает. Такое поведение называется резонансом.


Несомненно, это один из примеров полезного резонанса. Среди прочих нагревание пищи в микроволновой печи, антенна на радиоприемнике, принимающем радиосигнал, игра на флейте.


На самом деле, есть также множество плохих примеров. Разрушение стекла высоким тональным звуком, разрушение моста легким ветерком, обрушение зданий при землетрясениях – все это примеры резонанса в жизни, которые не просто вредные, но и опасные, в зависимости от силы воздействия.


Разрушительная сила звука

Многие наверняка слышали о том, что винный бокал можно разбить голосом оперной певицы. Если вы слегка ударите бокал ложкой, он будет «звонить», как колокол, на своей резонансной частоте. Если на стекло оказывается звуковое давление на определенной частоте, оно начинает вибрировать. По мере того как стимул продолжается, вибрация в бокале накапливается до тех пор, пока он не разрушится, когда будут превышены механические пределы.


Примеры полезного и вредного резонанса повсюду. Микроволны окружают все вокруг, от микроволновой печки, которая разогревает пищу без применения внешнего тепла, до вибраций в земной коре, приводящих к разрушительным землетрясениям.

Как на звук и световые волны влияет принцип резонанса? Что такое вибрации и резонансные частоты объектов? Какие повседневные примеры резонанса можно встретить в жизни? Как разбить бокал с помощью голоса? Если присмотреться, то можно увидеть примеры резонанса повсюду. Вот только некоторые из них несут пользу, а другие - вред.

Что такое резонанс?

Вы когда-нибудь задумывались над тем, как люди создают прекрасную музыку с помощью обыкновенных бокалов? По мере повышения воздействия на стекло звуковыми волнами оно может даже разбиться. Световые волны также взаимодействуют особыми способами с объектами вокруг себя. Поведение звуковых и световых волн объясняет, почему люди слышат звуки музыкальных инструментов и различают цвета. Изменения волновой амплитуды вызваны важным принципом, который называется резонансом. Примерами влияния на передачу звука и света являются вибрации.

Звуковые волны происходят от механических колебаний в твердых телах, жидкостях и газах. Световые волны исходят из вибрации заряженных частиц. Объекты, заряженные частицы и механические системы обычно имеют определенную частоту, на которой они склонны вибрировать. Это называется их резонансной частотой или их собственной частотой. Некоторые объекты имеют две или более резонансных частот. Пример резонанса: когда вы едете по ухабистой дороге, и ваш автомобиль начинает прыгать вверх и вниз - это пример колебания вашей машины на своей резонансной частоте, вернее резонансная частота амортизаторов. Вы можете заметить, что когда вы едете в автобусе, частота отскока немного медленнее. Это потому, что амортизаторы шины имеют более низкую резонансную частоту.

Когда звуковая или световая волна ударяет по объекту, она уже вибрирует на определенной частоте. Если эта частота будет соответствовать резонансной частоте объекта, то это приведет к тому, что вы получите резонанс. Он возникает, когда амплитуда колебаний объекта увеличивается за счет соответствующих колебаний другого объекта. Эту связь трудно представить без примера.

Резонанс и световые волны

Взять, к примеру, типичную световую волну (это поток белого света, который исходит от солнца) и направить ее на темный объект, пусть это будет черная змея. Молекулы в коже пресмыкающегося имеют набор резонансных частот. То есть электроны в атомах стремятся вибрировать на определенных частотах. Свет, спускающийся с солнца, - белый свет, который имеет многосоставную частоту.

Сюда входят красный и зеленый, синий и желтый, оранжевый и фиолетовый. Каждая из этих частот поражает кожу змеи. И каждая частота приводит к вибрации другого электрона. Желтая частота резонирует с электронами, резонансная частота которых желтая. Синяя частота резонирует с электронами, резонансная частота которых синяя. Таким образом, кожа змеи в целом резонирует с солнечным светом. Змея кажется черной, потому что ее кожа поглощает все частоты солнечного света.

Когда световые волны резонируют с объектом, они заставляют электроны вибрировать с большими амплитудами. Световая энергия поглощается объектом, и человеческому глазу не заметно, что свет возвращается обратно. Объект выглядит черным. Что делать, если объект не поглощает солнечный свет? Что если ни один из его электронов не резонирует со световыми частотами? Если резонанс не возникает, то вы получите передачу, пропускание световых волн через объект. Стекло кажется прозрачным, потому что оно не поглощает солнечный свет.

Свет все еще вызывает вибрации электронов. Но поскольку он не соответствует резонансным частотам электронов, колебания очень малы и проходят от атома к атому через весь объект. Объект без резонанса будет иметь нулевое поглощение и 100 % передачу, например стекло или вода.

Музыка и резонанс звуковых волн

Резонанс для звука работает так же, как и для света. Когда один объект вибрирует на частоте второго объекта, тогда первый заставляет второй вибрировать с высокой амплитудой. Так возникает акустический резонанс. Примером служит игра на любом музыкальном инструменте. Акустический резонанс отвечает за музыку, создаваемую трубой, флейтой, тромбоном и многими другими инструментами. Как работает это удивительное явление? Можно привести пример резонанса, который имеет положительный эффект.

Пройдя в собор, где играет органная музыка, можно заметить, что вся стена заполнена огромными трубами всех размеров. Некоторые из них очень короткие, а другие доходят до потолка. Для чего нужны все трубы? Когда начинает играть прекрасная музыка, можно понять, что звук исходит от труб, он очень громкий и, кажется, заполняет весь собор. Как такие трубы могут звучать так громко? Во всем виноват акустический резонанс, и он не является единственным инструментом, который использует это удивительное явление.

Создание звуковых волн

Чтобы понять, что происходит, вам сначала нужно немного узнать о том, как звук проходит по воздуху. Звуковые волны создаются, когда что-то вызывает вибрацию молекул воздуха. Затем эта вибрация перемещается, как волна, наружу во всех направлениях. Когда волна проходит по воздуху, есть области, где молекулы сжимаются ближе друг к другу, и области, где молекулы вытягиваются дальше друг от друга. Расстояние между последовательными сжатиями или расширениями известно как длина волны. Частота измеряется в единицах Герца (Гц), а один Герц соответствует одной скорости сжатия волны в секунду.

Люди могут обнаруживать звуковые волны с частотами от 20 до 20 000 Гц! Однако они не все звучат одинаково. Некоторые звуки высокие и скрипучие, в то время как другие низкие и глубокие. То, что вы на самом деле слышите, - это разница в частоте. Итак, как частота относится к длине волны? Скорость звука немного меняется в зависимости от температуры воздуха, но обычно она составляет около 343 м/с. Поскольку все звуковые волны движутся с одинаковой скоростью, частота будет уменьшаться по мере увеличения длины волны и возрастать при уменьшении длины волны.

Вредный резонанс: примеры

Часто люди принимают мостостроение и безопасность как должное. Однако иногда происходят катастрофы, заставляющие поменять свою точку зрения. 1 июля 1940 года в Вашингтоне был открыт мост Такома-Нэрроуз. Это был подвесной мост, третий по величине в мире для своего времени. Во время строительства мост получил прозвище «Галопирование Герти» из-за того, как он качался и сгибался на ветру. Это волнообразное колебание в конце концов привело к его крушению. Мост рухнул 7 ноября 1940 года во время бури, всего через четыре месяца его эксплуатации. Прежде чем узнавать о резонансной частоте и о том, что это связано с катастрофой моста Такома-Нэрроуз, сначала нужно понять что-то, называемое гармоническим движением.

Когда у вас есть объект, периодически колеблющийся назад и вперед, мы говорим, что он испытывает гармоническое движение. Один прекрасный пример проявления резонанса, испытывающего гармоническое движение, - свободная подвесная пружина с прикрепленной к ней массой. Масса заставляет пружину растягиваться вниз, пока в конце концов пружина не сжимается назад, чтобы вернуться к своей первоначальной форме. Этот процесс продолжает повторяться, и мы говорим, что пружина находится в гармоническом движении. Если вы посмотрите видео с моста Такома-Нэрроуз, то увидите, что он колебался, прежде чем рухнул. Он проходил гармоническое движение, как пружина с прикрепленной к ней массой.

Резонанс и качели

Если вы один раз толкнете своего друга на качелях, они несколько раз будут совершать колебательные движения и через некоторое время остановятся. Эта частота, когда колебание самопроизвольно колеблется, называется собственной частотой. Если вы даете толчок каждый раз, когда ваш друг возвращается к вам, он будет качаться все выше и выше. Вы нажимаете с частотой, аналогичной собственной частоте, и амплитуда колебаний возрастает. Такое поведение называется резонансом.

Несомненно, это один из примеров полезного резонанса. Среди прочих нагревание пищи в микроволновой печи, антенна на радиоприемнике, принимающем радиосигнал, игра на флейте.

На самом деле, есть также множество плохих примеров. Разрушение стекла высоким тональным звуком, разрушение моста легким ветерком, обрушение зданий при землетрясениях - все это примеры резонанса в жизни, которые не просто вредные, но и опасные, в зависимости от силы воздействия.

Разрушительная сила звука

Многие наверняка слышали о том, что винный бокал можно разбить голосом оперной певицы. Если вы слегка ударите бокал ложкой, он будет «звонить», как колокол, на своей резонансной частоте. Если на стекло оказывается звуковое давление на определенной частоте, оно начинает вибрировать. По мере того как стимул продолжается, вибрация в бокале накапливается до тех пор, пока он не разрушится, когда будут превышены механические пределы.

Примеры полезного и вредного резонанса повсюду. Микроволны окружают все вокруг, от микроволновой печки, которая разогревает пищу без применения внешнего тепла, до вибраций в земной коре, приводящих к разрушительным землетрясениям.



Статьи по теме: