Расчет тепловой нагрузки на отопление здания формула. Расчет тепловой нагрузки на отопление

При проектировании систем обогрева всех типов строений нужно провести правильные вычисления, а затем разработать грамотную схему отопительного контура. На этом этапе особое внимание следует уделить расчету тепловой нагрузки на отопление. Для решения поставленной задачи важно использовать комплексный подход и учесть все факторы, влияющие на работу системы.

    Показать всё

    Важность параметра

    С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

    Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

    Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.

    расчет нагрузки на отопление

    Выбор метода

    Перед началом проведения расчета нагрузки на отопление по укрупненным показателям нужно определиться с рекомендуемыми температурными режимами для жилого строения. Для этого придется обратиться к нормам СанПиН 2.1.2.2645−10. Исходя из данных, указанных в этом нормативном документе, необходимо обеспечить режимы работы системы обогрева для каждого помещения.

    Используемые сегодня способы выполнения расчетов часовой нагрузки на отопительную систему позволяют получать результаты различной степени точности. В некоторых ситуациях требуется провести сложные вычисления, чтобы минимизировать погрешность.

    Если же при проектировании системы отопления оптимизация расходов на энергоноситель не является приоритетной задачей, допускается использование менее точных методик.

    Расчет тепловой нагрузки и проектирование систем отопления Audytor OZC + Audytor C.O.

    Простые способы

    Любая методика расчета тепловой нагрузки позволяет подобрать оптимальные параметры системы обогрева. Также этот показатель помогает определиться с необходимостью проведения работ по улучшению теплоизоляции строения. Сегодня применяются две довольно простые методики расчета тепловой нагрузки.

    В зависимости от площади

    Если в строении все помещения имеют стандартные размеры и обладают хорошей теплоизоляцией, можно воспользоваться методом расчета необходимой мощности отопительного оборудования в зависимости от площади. В этом случае на каждые 10 м 2 помещения должен производиться 1 кВт тепловой энергии. Затем полученный результат необходимо умножить на поправочный коэффициент климатической зоны.

    Это самый простой способ расчета, но он имеет один серьезный недостаток - погрешность очень высока. Во время проведения вычислений учитывается лишь климатический регион. Однако на эффективность работы системы обогрева влияет много факторов. Таким образом, использовать эту методику на практике не рекомендуется.

    Укрупненные вычисления

    Применяя методику расчета тепла по укрупненным показателям, погрешность вычислений окажется меньшей. Этот способ сначала часто применялся для определения теплонагрузки в ситуации, когда точные параметры строения были неизвестны. Для определения параметра применяется расчетная формула:

    Qот = q0*a*Vн*(tвн - tнро),

    где q0 - удельная тепловая характеристика строения;

    a - поправочный коэффициент;

    Vн - наружный объем строения;

    tвн, tнро - значения температуры внутри дома и на улице.


    В качестве примера расчета тепловых нагрузок по укрупненным показателям можно выполнить вычисления максимального показателя для отопительной системы здания по наружным стенам 490 м 2 . Строение двухэтажное с общей площадью в 170 м 2 расположено в Санкт-Петербурге.

    Сначала необходимо с помощью нормативного документа установить все нужные для расчета вводные данные:

    • Тепловая характеристика здания - 0,49 Вт/м³*С.
    • Уточняющий коэффициент - 1.
    • Оптимальный температурный показатель внутри здания - 22 градуса.


    Предположив, что минимальная температура в зимний период составит -15 градусов, можно все известные величины подставить в формулу - Q =0.49*1*490 (22+15)= 8,883 кВт. Используя самую простую методику расчета базового показателя тепловой нагрузки, результат оказался бы более высоким - Q =17*1=17 кВт/час. При этом укрупненный метод расчета показателя нагрузки учитывает значительно больше факторов:

    • Оптимальные температурные параметры в помещениях.
    • Общую площадь строения.
    • Температуру воздуха на улице.

    Также эта методика позволяет с минимальной погрешностью рассчитать мощность каждого радиатора, установленного в отдельно взятом помещении. Единственным ее недостатком является отсутствие возможности рассчитать теплопотери здания.

    Расчет тепловых нагрузок, г. Барнаул

    Сложная методика

    Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания - пол, стены, а также потолок.

    Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой - R=d/λ.

    Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем - по вентиляции. В качестве примера можно взять следующие характеристики строения:

    • Площадь и толщина стен - 290 м² и 0,4 м.
    • В строении находятся окна (двойной стеклопакет с аргоном) - 45 м² (R =0,76 м²*С/Вт).
    • Стены изготовлены из полнотелого кирпича - λ=0,56.
    • Здание было утеплено пенополистиролом - d =110 мм, λ=0,036.


    Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен - R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя - R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель - R общ =0,71+3,05= 3,76 м²*С/Вт.

    Фактические теплопотери стен составят - (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой - 125,15*(22+15)= 4,63 кВт/час.

    Расчет тепловой мощности систем отопления

    На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу - 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы - (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, - 4,63+1,27=5,9 кВт/час.

Прежде чем приступать к закупке материалов и монтажу систем теплоснабжения дома или квартиры, необходимо провести расчет отопления, исходя из площади каждого помещения. Базовые параметры для проектирования обогрева и расчета тепловой нагрузки:

  • Площадь;
  • Количество оконных блоков;
  • Высота потолков;
  • Расположение комнаты;
  • Теплопотери;
  • Теплоотдача радиаторов;
  • Климатический пояс (температура наружного воздуха).

Методика, описанная ниже, применяется для расчета количества батарей для площади помещения без дополнительных источников отопления (теплые полы, кондиционеры и т.д.). Рассчитать отопление можно двумя способами: по простой и усложненной формуле.

До начала проектирования теплоснабжения стоит решить, какие именно радиаторы будут устанавливаться. Материал, из которого изготавливаются батареи обогрева:

  • Чугун;
  • Сталь;
  • Алюминий;
  • Биметалл.

Оптимальным вариантом считаются алюминиевые и биметаллические радиаторы. Самая высокая тепловая отдача у биметаллических устройств. Чугунные батареи долго нагреваются, но после отключения отопления температура в помещении держится довольно долго.

Простая формула для проектирования количества секции в радиаторе обогрева:

K = Sх(100/R), где:

S – площадь помещения;

R – мощность секции.

Если рассматривать на примере с данными: комната 4 х 5 м, биметаллический радиатор, мощность 180 Вт. Расчет будет выглядеть так:

K = 20*(100/180) = 11,11. Итак, для комнаты площадью 20 м 2 необходимой для установки является батарея с минимум 11-ю секциями. Или, например, 2 радиатора по 5 и 6 ребер. Формула используется для помещений с высотой потолка до 2,5 м в стандартном здании советской постройки.

Однако такой расчет системы отопления не учитывает теплопотери здания, также не берется в расчет температура наружного воздуха дома и количество оконных блоков. Поэтому следует также брать во внимание эти коэффициенты, для окончательного уточнения количества ребер.

Вычисления для панельных радиаторов

В случае когда предполагается установка батареи с панелью вместо ребер, используется следующая формула по объему:

W = 41хV, где W – мощность батареи, V – объем комнаты. Число 41 – норма средней годовой мощности обогрева 1 м 2 жилого помещения.

В качестве примера можно взять помещение площадью 20 м 2 и высотой 2,5 м. Значение мощности радиатора по объему помещения в 50 м 3 будет равно 2050 Вт, или 2 кВт.

Расчет теплопотерь

H2_2

Основные потери тепла происходят через стены помещения. Для расчета нужно знать коэффициент теплопроводности наружного и внутреннего материала, из которого построен дом, толщину стены здания, также важна средняя температура наружного воздуха. Основная формула:

Q = S х ΔT /R, где

ΔT – разница температуры снаружи и внутреннего оптимального значения;

S – площадь стен;

R – тепловое сопротивление стен, которое, в свою очередь, рассчитывается по формуле:

R = B/K, где B – толщина кирпича, K – коэффициент теплопроводности.

Пример расчета: дом построен из ракушняка, в камень, находится в Самарской области. Теплопроводность ракушняка в среднем составляет 0,5 Вт/м*К, толщина стены – 0,4 м. Учитывая средний диапазон, минимальная температура зимой -30 °C. В доме, согласно СНИП, нормальная температура составляет +25 °C, разница 55°C.

Если комната угловая, то обе ее стены непосредственно контактируют с окружающей средой. Площадь наружных двух стен комнаты 4х5 м и высотой 2,5 м: 4х2,5 + 5х2,5 = 22,5 м 2 .

R = 0,4/0,5 = 0,8

Q = 22,5*55/0,8 = 1546 Вт.

Кроме того, необходимо учитывать утепление стен помещения. При отделке пенопластом наружной площади теплопотери уменьшаются примерно на 30%. Итак, окончательная цифра составит около 1000 Вт.

Расчет тепловой нагрузки (усложненная формула)

Схема теплопотерь помещений

Чтобы вычислить окончательный расход тепла на отопление, необходимо учесть все коэффициенты по следующей формуле:

КТ = 100хSхК1хК2хК3хК4хК5хК6хК7, где:

S – площадь комнаты;

К – различные коэффициенты:

K1 – нагрузки для окон (в зависимости от количества стеклопакетов);

K2 – тепловой изоляции наружных стен здания;

K3 –нагрузки для соотношения площади окон к площади пола;

K4 – температурного режима наружного воздуха;

K5 – учитывающий количество наружных стен комнаты;

K6 – нагрузки, исходя из верхнего помещения над рассчитываемой комнатой;

K7 – учитывающий высоту помещения.

Как пример, можно рассмотреть ту же комнату здания в Самарской области, утепленную снаружи пенопластом, имеющую 1 окно с двойным стеклопакетом, над которой расположено отапливаемое помещение. Формула тепловой нагрузки будет выглядеть следующим образом:

KT = 100*20*1,27*1*0,8*1,5*1,2*0,8*1= 2926 Вт.

Расчет отопления ориентирован именно на эту цифру.

Расход тепла на отопление: формула и корректировки

Исходя из выше сделанных расчетов, для отопления комнаты необходимо 2926 Вт. Учитывая тепловые потери, потребности составляют: 2926 + 1000 = 3926 Вт (KT2). Для расчета количества секций используют следующую формулу:

K = KT2/R, где KT2 – окончательное значение тепловой нагрузки, R – теплоотдача (мощность) одной секции. Итоговая цифра:

K = 3926/180 = 21,8 (округленная 22)

Итак, чтобы обеспечить оптимальный расход тепла на отопление, необходимо поставить радиаторы, имеющие в сумме 22 секции. Нужно учитывать, что самая низкая температура – 30 градусов мороза по времени составляет максимум 2-3 недели, поэтому можно смело уменьшить число до 17 секций (- 25%).

Если хозяев жилья не устраивает такой показатель количества радиаторов, то следует изначально брать во внимание батареи, имеющие большую мощность теплоснабжения. Либо утеплять стены здания и внутри, и снаружи современными материалами. Кроме того, нужно правильно оценить потребности жилья в тепле, исходя из второстепенных параметров.

Существует еще несколько параметров, влияющих на дополнительный расход энергии впустую, что влечет за собой увеличение тепловой потери:

  1. Особенности наружных стен. Энергии обогрева должно хватить не только для отопления помещения, но и для компенсации потерь тепла. Стена, контактирующая с окружающей средой, со временем от перепадов температуры наружного воздуха начинает пропускать внутрь влагу. Особенно следует хорошо утеплить и провести качественную гидроизоляцию для северных направлений. Также рекомендуется изолировать поверхность домов, находящихся во влажных регионах. Высокий годовой уровень осадков неизбежно приведет к повышению теплопотерь.
  2. Место установки радиаторов. Если батарея монтирована под окном, то происходит утечка энергии обогрева через его конструкцию. Уменьшить потери тепла поможет установка качественных блоков. Также нужно рассчитывать мощность прибора, установленного в подоконной нише – она должна быть выше.
  3. Условность годовой потребности тепла для зданий в разных часовых поясах. Как правило, по СНИПам рассчитывается усредненная температура (усредненный годовой показатель) для зданий. Однако потребности в тепле бывают существенно ниже, если, например, на холодную погоду и низким показателям наружного воздуха приходится в общей сложности 1 месяц в году.

Совет! Чтобы максимально снизить потребности в тепле зимой, рекомендуется установить дополнительные источники обогрева воздуха внутри помещения: кондиционеры, передвижные обогреватели и пр.

Чтобы выяснить, какой мощностью должно располагать теплосиловое оборудование частного дома, нужно определить общую нагрузку на систему отопления, для чего и выполняется тепловой расчет. В данной статье мы не станем говорить об укрупненной методике подсчетов по площади или объему здания, а представим более точный способ, используемый проектировщиками, только в упрощенном виде для лучшего восприятия. Итак, на систему отопления дома ложится 3 вида нагрузок:

  • компенсация потерь тепловой энергии, уходящей сквозь строительные конструкции (стены, полы, кровлю);
  • нагрев воздуха, потребного для вентиляции помещений;
  • подогрев воды для нужд ГВС (когда в этом задействован котел, а не отдельный нагреватель).

Определение потерь тепла через наружные ограждения

Для начала представим формулу из СНиП, по которой производится расчет тепловой энергии, теряемой через строительные конструкции, отделяющие внутреннее пространство дома от улицы:

Q = 1/R х (tв – tн) х S, где:

  • Q – расход тепла, уходящего через конструкцию, Вт;
  • R – сопротивление передаче тепла сквозь материал ограждения, м2ºС / Вт;
  • S – площадь этой конструкции, м2;
  • tв – температура, которая должна быть внутри дома, ºС;
  • tн – средняя уличная температура за 5 самых холодных дней, ºС.

Для справки. Согласно методике расчет теплопотерь выполняется отдельно для каждого помещения. С целью упростить задачу предлагается взять здание в целом, приняв приемлемую среднюю температуру 20-21 ºС.

Площадь для каждого вида наружного ограждения вычисляется отдельно, для чего измеряются окна, двери, стены и полы с кровлей. Так делается, потому что они изготовлены из разных материалов различной толщины. Так что расчет придется делать отдельно для всех видов конструкций, а результаты потом просуммировать. Самую холодную уличную температуру в своем районе проживания вы наверняка знаете из практики. А вот параметр R придется рассчитать отдельно по формуле:

R = δ / λ, где:

  • λ – коэффициент теплопроводности материала ограждения, Вт/(мºС);
  • δ – толщина материала в метрах.

Примечание. Значение λ – справочное, его нетрудно отыскать в любой справочной литературе, а для пластиковых окон этот коэффициент вам подскажут производители. Ниже приводится таблица с коэффициентами теплопроводности некоторых стройматериалов, причем для вычислений надо брать эксплуатационные значения λ.

В качестве примера подсчитаем, сколько тепла потеряет 10 м2 кирпичной стены толщиной 250 мм (2 кирпича) при разнице температур снаружи и в доме 45 ºС:

R = 0.25 м / 0.44 Вт/(м · ºС) = 0.57 м2 ºС / Вт.

Q = 1/0.57 м2 ºС / Вт х 45 ºС х 10 м2 = 789 Вт или 0.79 кВт.

Если стена состоит из разных материалов (конструкционный материал плюс утеплитель), то их тоже надо считать отдельно по приведенным выше формулам, а результаты суммировать. Таким же образом просчитываются окна и кровля, а вот с полами дело обстоит иначе. Первым делом необходимо нарисовать план здания и разбить его на зоны шириной 2 м, как это сделано на рисунке:

Теперь следует вычислить площадь каждой зоны и поочередно подставить в главную формулу. Вместо параметра R нужно взять нормативные значения для зоны I, II, III и IV, указанные ниже в таблице. По окончании расчетов результаты складываем и получаем общие потери тепла через полы.

Расход на подогрев вентиляционного воздуха

Малосведущие люди часто не учитывают, что приточный воздух в доме тоже надо подогревать и эта тепловая нагрузка тоже ложится на отопительную систему. Холодный воздух все равно попадает в дом извне, хотим мы того или нет, и на его нагрев нужно затратить энергию. Больше того, в частном доме должна функционировать полноценная приточно-вытяжная вентиляция, как правило, с естественным побуждением. Воздухообмен создается благодаря наличию тяги в вентиляционных каналах и дымоходе котла.

Предлагаемая в нормативной документации методика определения тепловой нагрузки от вентиляции достаточно сложна. Довольно точные результаты можно получить, если просчитать эту нагрузку по общеизвестной формуле через теплоемкость вещества:

Qвент = cmΔt, здесь:

  • Qвент – количество теплоты, потребное для нагрева приточного воздуха, Вт;
  • Δt – разница температур на улице и внутри дома, ºС;
  • m – масса воздушной смеси, поступающей извне, кг;
  • с – теплоемкость воздуха, принимается 0.28 Вт / (кг ºС).

Сложность расчета этого типа тепловой нагрузки заключается в правильном определении массы нагреваемого воздуха. Выяснить, сколько его попадает внутрь дома, при естественной вентиляции сложно. Поэтому стоит обратиться к нормативам, ведь здания строят по проектам, где заложены потребные воздухообмены. А нормативы говорят, что в большинстве комнат воздушная среда должна меняться 1 раз в час. Тогда берем объемы всех помещений и прибавляем к ним нормы расхода воздуха на каждый санузел – 25 м3/ч и кухонную газовую плиту – 100 м3/ч.

Чтобы произвести расчет тепловой нагрузки на отопление от вентиляции, полученный объем воздуха надо пересчитать в массу, узнав его плотность при разных температурах из таблицы:

Предположим, что общее количество приточного воздуха составляет 350 м3/ч, температура снаружи – минус 20 ºС, внутри – плюс 20 ºС. Тогда его масса составит 350 м3 х 1.394 кг/м3 = 488 кг, а тепловая нагрузка на отопительную систему - Qвент = 0.28 Вт / (кг ºС) х 488 кг х 40 ºС = 5465.6 Вт или 5.5 кВт.

Тепловая нагрузка от нагрева воды для ГВС

Для определения этой нагрузки можно воспользоваться той же простой формулой, только теперь надо посчитать тепловую энергию, расходуемую на подогрев воды. Ее теплоемкость известна и составляет 4.187 кДж/кг °С или 1.16 Вт/кг °С. Учитывая, что семье из 4 человек на все потребности достаточно 100 л воды на 1 сутки, нагретой до 55 °С, подставляем эти цифры в формулу и получаем:

QГВС = 1.16 Вт/кг °С х 100 кг х (55 – 10) °С = 5220 Вт или 5.2 кВт теплоты в сутки.

Примечание. По умолчанию принято, что 1 л воды равен 1 кг, а температура холодной водопроводной воды равна 10 °С.

Единица мощности оборудования всегда отнесена к 1 часу, а полученные 5.2 кВт – к суткам. Но делить эту цифру на 24 нельзя, ведь горячую воду мы хотим получать как можно скорее, а для этого котел должен располагать запасом мощности. То есть, эту нагрузку надо прибавить к остальным как есть.

Заключение

Данный расчет нагрузок на отопление дома даст гораздо более точные результаты, нежели традиционный способ по площади, хотя потрудиться придется. Конечный результат нужно обязательно умножить на коэффициент запаса – 1.2, а то и 1.4 и по рассчитанному значению подбирать котельное оборудование. Еще один способ укрупненного расчета тепловых нагрузок по нормативам показан на видео:

Проектирование и тепловой расчет системы отопления — обязательный этап при обустройстве обогрева дома. Основная задача вычислительных мероприятий — определение оптимальных параметров котла и системы радиаторов.

Согласитесь, на первый взгляд может показаться, что проведение теплотехнического расчета под силу только инженеру. Однако не все так сложно. Зная алгоритм действий, получится самостоятельно выполнить необходимые вычисления.

В статье подробно изложен порядок расчета и приведены все нужные формулы. Для лучшего понимания, мы подготовили пример теплового вычисления для частного дома.

Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

Галерея изображений

Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении.

Основные задачи расчёта и проектирования системы отопления:

  • наиболее достоверно определить тепловые потери;
  • определить количество и условия использования теплоносителя;
  • максимально точно подобрать элементы генерации, перемещения и отдачи тепла.

А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.

Для нежилых помещений офисного типа площадью до 100 м 2:

Для помещений офисного типа площадью более 100 м 2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

Комфортная температура помещения у каждого человека «своя». Кто-то любит чтобы было очень тепло в комнате, кому-то комфортно когда в комнате прохладно — это всё достаточно индивидуально

Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.

И всё же для конкретных помещений квартиры и дома имеем:

  • 20-22°С — жилая, в том числе детская, комната, допуск ±2°С —
  • 19-21°С — кухня, туалет, допуск ±2°С;
  • 24-26°С — ванная, душевая, бассейн, допуск ±1°С;
  • 16-18°С — коридоры, прихожие, лестничные клетки, кладовые, допуск +3°С

Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п.

Расчёт теплопотерь в доме

Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является «стремление» создания температурного равновесия между двумя термодинамическими системами.

Например, первая система — окружающая среда с температурой -20°С, вторая система — здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

Однозначно можно сказать, что температура окружающей среды зависит от широты на которой расположен частный дом. А разница температур влияет на количество утечек тепла от здания (+)

Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры). Для обычной квартиры этот процесс не так «заметен» в сравнении с частным домом, поскольку квартира находиться внутри здания и «соседствует» с другими квартирами.

В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени «уходит» тепло.

Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.

Итак, объём утечек тепла от здания вычисляется по следующей формуле:

Q=Q пол +Q стена +Q окно +Q крыша +Q дверь +…+Q i , где

Qi — объём теплопотерь от однородного вида оболочки здания.

Каждая составляющая формулы рассчитывается по формуле:

Q=S*∆T/R , где

  • Q – тепловые утечки, В;
  • S – площадь конкретного типа конструкции, кв. м;
  • ∆T – разница температур воздуха окружающей среды и внутри помещения, °C;
  • R – тепловое сопротивление определённого типа конструкции, м 2 *°C/Вт.

Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц.

Кроме того, тепловое сопротивление можно получить с помощью следующего соотношения:

R=d/k , где

  • R – тепловое сопротивление, (м 2 *К)/Вт;
  • k – коэффициент теплопроводности материала, Вт/(м 2 *К);
  • d – толщина этого материала, м.

В старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак. Проведение мероприятий по или решают эту проблему.

Если утеплить чердачное пространство и крышу, то общие потери тепла от дома можно значительно уменьшить

В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей. Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.

Определение мощности котла

Для поддержки разницы температур между окружающей средой и температурой внутри дома необходима автономная система отопления, которая поддерживает нужную температуру в каждой комнате частного дома.

Базисом системы отопления выступают разные : жидко- или твердотопливные, электрические или газовые.

Котел — это центральный узел системы отопления, который генерирует тепло. Основной характеристикой котла есть его мощность, а именно скорость преобразования количество теплоты за единицу времени.

Произведя расчеты тепловой нагрузки на отопление получим требуемую номинальную мощность котла.

Для обычной многокомнатной квартиры мощность котла вычисляется через площадь и удельную мощность:

Р котла =(S помещения *Р удельная)/10 , где

  • S помещения — общая площадь отапливаемого помещения;
  • Р уделльная удельная мощность относительно климатических условий.

Но эта формула не учитывает тепловые потери, которых достаточно в частном доме.

Существует иное соотношение, которое учитывает этот параметр:

Р котла =(Q потерь *S)/100 , где

  • Р котла — мощность котла;
  • Q потерь — потери тепла;
  • S — отапливаемая площадь.

Расчетную мощность котла необходимо увеличить. Запас необходим, если планируется использование котла для подогрева воды для ванной комнаты и кухни.

В большинстве систем отопления частных домов рекомендуется обязательно использовать расширительный резервуар, в котором будет храниться запас теплоносителя. Каждый частный дом нуждается в горячем водоснабжении

Дабы предусмотреть запас мощности котла в последнюю формулу надо добавить коэффициент запаса К:

Р котла =(Q потерь *S*К)/100 , где

К — будет равен 1.25, то есть расчётная мощность котла будет увеличена на 25%.

Таким образом, мощность котла предоставляет возможность поддерживать нормативную температуру воздуха в комнатах здания, а также иметь начальный и дополнительный объём горячей воды в доме.

Особенности подбора радиаторов

Стандартными компонентами обеспечения тепла в помещении являются радиаторы, панели, системы «тёплый» пол, конвекторы и т. д. Самыми распространёнными деталями отопительной системы есть радиаторы.

Тепловой радиатор — это специальная полая конструкция модульного типа из сплава с высокой теплоотдачей. Он изготавливается из стали, алюминия, чугуна, керамика и других сплавов. Принцип действия радиатора отопления сводится к излучению энергии от теплоносителя в пространство помещения через «лепестки».

Алюминиевый и биметаллический радиатор отопления пришёл на смену массивным чугунным батареям. Простота производства, высокая теплоотдача, удачная конструкция и дизайн сделали это изделие популярным и распространённым инструментом излучения тепла в помещении

Существует несколько методик в комнате. Нижеприведённый перечень способов отсортирован в порядке увеличения точности вычислений.

Варианты вычислений:

  1. По площади . N=(S*100)/C, где N — количество секций, S — площадь помещения (м 2), C — теплоотдача одной секции радиатора (Вт, берётся из тех паспорта или сертификата на изделие), 100 Вт — количество теплового потока, которое необходимо для нагрева 1 м 2 (эмпирическая величина). Возникает вопрос: а каким образом учесть высоту потолка комнаты?
  2. По объёму . N=(S*H*41)/C, где N, S, C — аналогично. Н — высота помещения, 41 Вт — количество теплового потока, которое необходимо для нагрева 1 м 3 (эмпирическая величина).
  3. По коэффициентам . N=(100*S*к1*к2*к3*к4*к5*к6*к7)/C, где N, S, C и 100 — аналогично. к1 — учёт количества камер в стеклопакете окна комнаты, к2 — теплоизоляция стен, к3 — соотношение площади окон к площади помещения, к4 — средняя минусовая температура в наиболее холодную неделю зимы, к5 — количество наружных стен комнаты (которые «выходят» на улицу), к6 — тип помещения сверху, к7 — высота потолка.

Это максимально точный вариант расчёта количества секций. Естественно, что округление дробных результатов вычислений производится всегда к следующему целому числу.

Гидравлический расчёт водоснабжения

Безусловно, «картина» расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.

Реальный объём теплоносителя рекомендуется рассчитывать через суммирование всех полостей в системе отопления. При использовании одноконтурного котла — это оптимальный вариант. При применении двухконтурных котлов в системе отопления необходимо учитывать расходы горячей воды для гигиенических и иных бытовых целей

Расчет объема воды, подогреваемой двухконтурным котлом для обеспечения жильцов горячей водой и нагрева теплоносителя, производится путем суммирования внутреннего объема отопительного контура и реальных потребностей пользователей в нагретой воде.

Объём горячей воды в отопительной системе рассчитывается по формуле:

W=k*P , где

  • W — объём носителя тепла;
  • P — мощность котла отопления;
  • k — коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон — 10-15 л).

В итоге конечная формула выглядит так:

W = 13.5*P

Скорость теплоносителя — заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе.

Эта величина помогает оценить тип и диаметр трубопровода:

V=(0.86*P*μ)/∆T , где

  • P — мощность котла;
  • μ — КПД котла;
  • ∆T — разница температур между подаваемой водой и водой обратном контуре.

Используя вышеизложенные способы , удастся получить реальные параметры, которые являются «фундаментом» будущей системы отопления.

Пример теплового расчёта

В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, «зимний сад» и подсобные помещения.

Фундамент из монолитной железобетонной плиты (20 см), наружные стены — бетон (25 см) со штукатуркой, крыша — перекрытия из деревянных балок, кровля — металлочерепица и минеральная вата (10 см)

Обозначим исходные параметры дома, необходимые для проведения расчетов.

Габариты здания:

  • высота этажа — 3 м;
  • малое окно фасадной и тыльной части здания 1470*1420 мм;
  • большое окно фасада 2080*1420 мм;
  • входные двери 2000*900 мм;
  • двери тыльной части (выход на террасу) 2000*1400 (700 + 700) мм.

Общая ширина постройки 9.5 м 2 , длинна 16 м 2 . Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня.

Для точного расчёта теплопотерь на стенах из площади внешних стен нужно вычесть площадь всех окон и дверей — это совсем другой тип материала со своим тепловым сопротивлением

Начинаем с расчёта площадей однородных материалов:

  • площадь пола — 152 м 2 ;
  • площадь крыши — 180 м 2 , учитывая высоту чердака 1.3 м и ширину прогона — 4 м;
  • площадь окон — 3*1.47*1.42+2.08*1.42=9.22 м 2 ;
  • площадь дверей — 2*0.9+2*2*1.4=7.4 м 2 .

Площадь наружных стен будет равна 51*3-9.22-7.4=136.38 м 2 .

Переходим к расчёту теплопотерь на каждом материале:

  • Q пол =S*∆T*k/d=152*20*0.2/1.7=357.65 Вт;
  • Q крыша =180*40*0.1/0.05=14400 Вт;
  • Q окно =9.22*40*0.36/0.5=265.54 Вт;
  • Q двери =7.4*40*0.15/0.75=59.2 Вт;

А также Q стена эквивалентно 136.38*40*0.25/0.3=4546. Сумма всех теплопотерь будет составлять 19628.4 Вт.

В итоге подсчитаем мощность котла: Р котла =Q потерь *S отаплив_комнат *К/100=19628.4*(10.4+10.4+13.5+27.9+14.1+7.4)*1.25/100=19628.4*83.7*1.25/100=20536.2=21 кВт.

Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.

Значит, N=(100*к1*к2*к3*к4*к5*к6*к7)/C=(100*10.4*1.0*1.0*0.9*1.3*1.2*1.0*1.05)/180=8.5176=9.

Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт.

Переходим к расчёту количества теплоносителя в системе — W=13.5*P=13.5*21=283.5 л. Значит, скорость теплоносителя будет составлять: V=(0.86*P*μ)/∆T=(0.86*21000*0.9)/20=812.7 л.

В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен 2.87 раза в один час.

Подборка статей по тепловому расчету поможет определиться с точными параметрами элементов отопительной системы:

Выводы и полезное видео по теме

Простой расчёт отопительной системы для частного дома представлен в следующем обзоре:

Все тонкости и общепринятые методики просчёта теплопотерь здания показаны ниже:

Ещё один вариант расчёта утечек тепла в типичном частном доме:

В этом видео рассказывается об особенностях циркуляции носителя энергии для обогрева жилища:

Тепловой расчёт отопительной системы носит индивидуальный характер, его необходимо выполнять грамотно и аккуратно. Чем точнее будут сделаны вычисления, тем меньше переплачивать придется владельцам загородного дома в процессе эксплуатации.

Имеете опыт выполнения теплового расчета отопительной системы? Или остались вопросы по теме? Пожалуйста, делитесь своим мнением и оставляйте комментарии. Блок обратной связи расположен ниже.

В домах, которые сдавались в эксплуатацию в последние годы, обычно данные правила выполнены, поэтому расчет отопительной мощности оборудования проходит на основе стандартных коэффициентов. Индивидуальный расчет может проводиться по инициативе собственника жилья или коммунальной структуру, занимающейся поставкой тепла. Это случается при стихийной замене радиаторов отопления, окон и других параметров.

В квартире, обслуживаемой коммунальным предприятием, расчет тепловой нагрузки может быть проведен только при передаче дома с целью отслеживания параметров СНИП в принимаемом на баланс помещении. В противном случае это делает владелец квартиры, чтобы рассчитать свои теплопотери в холодное время года и устранить недостатки утепления – использовать теплоизолирующую штукатурку, поклеить утеплитель, монтировать на потолках пенофол и установить металлопластиковые окна с пятикамерным профилем.

Расчет тепловых утечек для коммунальной службы с целью открытия спора, как правило, не дает результата. Причина в том, что существуют стандарты теплопотерь. Если дом введен в эксплуатацию, то требования выполнены. При этом приборы отопления соответствуют требованиями СНИП. Замена батарей и отбор большего количества тепла запрещен, так как радиаторы установлены по утвержденным строительным стандартам.

Частные дома отапливаются автономными системами, что при этом расчет нагрузки осуществляется для соблюдения требований СНИП, и коррекции отопительной мощности проводится в совокупности с работами по уменьшению теплопотерь.

Расчеты можно сделать вручную, используя несложную формулу или калькулятор на сайте. Программа помогает рассчитать необходимую мощность системы отопления и утечки тепла, характерные для зимнего периода. Расчеты осуществляются для определенного теплового пояса.

Основные принципы

Методика включает в себя целый ряд показателей, которые в совокупности позволяют оценить уровень утепления дома, соответствие стандартам СНИП, а также мощность котла отопления. Как это работает:

По объекту проводится индивидуальный или усредненный расчет. Основной смысл проведения подобного обследования состоит в том, что при хорошем утеплении и малых утечках тепла в зимний период можно использовать 3 кВт. В здании той же площади, но без утепления, при низких зимних температурах потребляемая мощность составит до 12 кВт. Таким образом, тепловую мощность и нагрузку оценивают не только по площади, но и по теплопотерям.

Основные теплопотери частного дома:

  • окна – 10-55%;
  • стены – 20-25%;
  • дымоход – до 25%;
  • крыша и потолок – до 30%;
  • низкие полы – 7-10%;
  • температурный мост в углах – до 10%

Данные показатели могут варьироваться в лучшую и худшую сторону. Их оценивают в зависимости от типов установленных окон, толщины стен и материалов, степени утепления потолка. Например, в плохо утепленных зданиях теплопотери через стены могут достигать 45% процентов, в этом случае к системе отопления применимо выражение «топим улицу». Методика и
калькулятор помогут оценить номинальные и расчетные значения.

Специфика расчетов

Данную методику еще можно встретить под названием «теплотехнический расчет». Упрощенная формула имеет следующий вид:

Qt = V × ∆T × K / 860, где

V – объем помещения, м³;

∆T – максимальная разница в помещении и вне помещения, °С;

К – оценочный коэффициент тепловых потерь;

860 – коэффициент перехода в кВт/час.

Коэффициент тепловых потерь К зависит от строительной конструкции, толщины и теплопроводности стен. Для упрощенных расчетов можно использовать следующие параметры:

  • К = 3,0-4,0 – без теплоизоляции (неутепленное каркасное или металлическое строение);
  • К = 2,0-2,9 – малая теплоизоляция (кладка в один кирпич);
  • К = 1,0-1,9 – средняя теплоизоляция (кирпичная кладка в два кирпича);
  • К = 0,6-0,9 – хорошая теплоизоляция по стандарту.

Данные коэффициенты усредненные и не позволяют оценить теплопотери и тепловую нагрузку на помещение, поэтому рекомендуем воспользоваться онлайн-калькулятором.

Нет записей по теме.



Статьи по теме: