Применение электрического тока в металлах.

Темы кодификатора ЕГЭ : носители свободных электрических зарядов в металлах.

В этом листке мы приступаем к подробному изучению того, как осуществляется прохождение электрического тока в различных проводящих средах - твёрдых телах, жидкостях и газах.

Напомним, что необходимым условием возникновения тока является наличие в среде достаточно большого количества свободных зарядов , которые могут начать упорядоченное движение под действием электрического поля. Такие среды как раз и называются проводниками электрического тока.

Наиболее широко распространены металлические проводники. Поэтому начинаем мы с вопросов распространения электрического тока в металлах.

Мы много раз говорили о свободных электронах , которые являются носителями свободных зарядов в металлах. Вам хорошо известно, что электрический ток в металлическом проводнике образуется в результате направленного движения свободных электронов.

Свободные электроны

Металлы в твёрдом состоянии имеют кристаллическую структуру: расположение атомов в пространстве характеризуется периодической повторяемостью и образует геометрически правильный рисунок, называемый кристаллической решёткой .

Атомы металлов имеют небольшое число валентных электронов , расположенных на внешней электронной оболочке. Эти валентные электроны слабо связаны с ядром, и атом легко может их потерять.

Когда атомы металла занимают места в кристаллической решётке, валентные электроны покидают свои оболочки - они становятся свободными и отправляются «гулять» по всему кристаллу (а именно, свободные электроны перемещаются по внешним орбиталям соседних атомов. Эти орбитали перекрываются друг с другом вследствие близкого расположения атомов в кристаллической решётке, так что свободные электроны оказываются «общей собственностью» всего кристалла). В узлах кристаллической решётки металла остаются положительные ионы , пространство между которыми заполнено «газом» свободных электронов (рис. 1 ).

Рис. 1. Свободные электроны

Свободные электроны и впрямь ведут себя подобно частицам газа (другой адекватный образ - электронное море , которое «омывает» кристаллическую решётку) - совершая тепловое движение, они хаотически снуют туда-сюда между ионами кристаллической решётки. Суммарный заряд свободных электронов равен по модулю и противоположен по знаку общему заряду положительных ионов, поэтому металлический проводник в целом оказывается электрически нейтральным.

Газ свободных электронов является «клеем», на котором держится вся кристаллическая структура проводника. Ведь положительные ионы отталкиваются друг от друга, так что кристаллическая решётка, распираемая изнутри мощными кулоновскими силами, могла бы разлететься в разные стороны. Однако в тоже самое время ионы металла притягиваются к обволакивающему их электронному газу и, как ни в чём не бывало, остаются на своих местах, совершая лишь тепловые колебания в узлах кристаллической решётки вблизи положений равновесия.

Что произойдёт, если металлический проводник включить в замкнутую цепь, содержащую источник тока? Свободные электроны продолжают совершать хаотическое тепловое движение, но теперь - под действием возникшего внешнего электрического поля - они вдобавок начнут перемещаться упорядоченно . Это направленное течение электронного газа, накладывающееся на тепловое движение электронов, и есть электрический ток в металле (поэтому свободные электроны называются также электронами проводимости ). Скорость упорядоченного движения электронов в металлическом проводнике, как нам уже известно, составляет приблизительно 0,1мм/с.

Опыт Рикке

Почему мы решили, что ток в металлах создаётся движением именно свободных электронов? Положительные ионы кристаллической решётки также испытывают на себе действие внешнего электрического поля. Может, они тоже перемещаются внутри металлического проводника и участвуют в создании тока?

Упорядоченное движение ионов означало бы постепенный перенос вещества вдоль направления электрического тока. Поэтому надо просто пропускать ток по проводнику на протяжении весьма длительного времени и посмотреть, что в итоге получится. Такого рода эксперимент и был поставлен Э.Рикке в 1901 году.

В электрическую цепь были включены три прижатых друг к другу цилиндра: два медных по краям и один алюминиевый между ними (рис. 2 ). По этой цепи пропускался электрический ток в течение года.

Рис. 2. Опыт Рикке

За год сквозь цилиндры прошёл заряд более трёх миллионов кулон. Предположим, что каждый атом металла теряет по одному валентному электрону, так что заряд иона равен элементарному заряду Кл. Если ток создаётся движением положительных ионов, то нетрудно подсчитать (сделайте это сами!), что такая величина прошедшего по цепи заряда соответствует переносу вдоль цепи около 2кг меди.

Однако после разъединения цилиндров было обнаружено лишь незначительное проникновение металлов друг в друга, обусловленное естественной диффузией их атомов (и не более того). Электрический ток в металлах не сопровождается переносом вещества , поэтому положительные ионы металла не принимают участия в создании тока.

Опыт Стюарта–Толмена

Прямое экспериментальное доказательство того, что электрический ток в металлах создаётся движением свободных электронов, было дано в опыте Т.Стюарта и Р.Толмена (1916 год).

Эксперименту Стюарта–Толмена предшествовали качественные наблюдения, сделанные четырьмя годами ранее русскими физиками Л.И.Мандельштамом и Н.Д.Папалекси. Они обратили внимание на так называемый электроинерционный эффект : если резко затормозить движущийся проводник, то в нём возникает кратковременный импульс тока. Эффект объясняется тем, что в течение небольшого времени после торможения проводника его свободные заряды продолжают двигаться по инерции.

Однако никаких количественных результатов Мандельштам и Папалекси не получили, и наблюдения их опубликованы не были. Честь назвать опыт своим именем принадлежит Стюарту и Толмену, которые не только наблюдали указанный электроинерционный эффект, но и произвели необходимые измерения и расчёты.

Установка Стюарта и Толмена показана на рис. 3 .

Рис. 3. Опыт Стюарта–Толмена

Катушка большим числом витков металлического провода приводилась в быстрое вращение вокруг своей оси. Концы обмотки с помощью скользящих контактов были подсоединены к специальному прибору - баллистическому гальванометру , который позволяет измерять проходящий через него заряд.

После резкого торможения катушки в цепи возникал импульс тока. Направление тока указывало на то, что он вызван движением отрицательных зарядов. Измеряя баллистическим гальванометром суммарный заряд, проходящий по цепи, Стюарт и Толмен вычислили отношение заряда одной частицы к её массе. Оно оказалось равно отношению для электрона, которое в то время уже было хорошо известно.

Так было окончательно выяснено, что носителями свободных зарядов в металлах являются свободные электроны . Как видите, этот давно и хорошо знакомый вам факт был установлен сравнительно поздно - учитывая, что металлические проводники к тому моменту уже более столетия активно использовались в самых разнообразных экcпериментах по электромагнетизму (сравните, например, с датой открытия закона Ома - 1826 год. Дело, однако, заключается в том, что сам электрон был открыт лишь в 1897 году).

Зависимость сопротивления от температуры

Опыт показывает, что при нагревании металлического проводника его сопротивление увеличивается. Как это объяснить?

Причина проста: с повышением температуры тепловые колебания ионов кристаллической решётки становятся более интенсивными, так что число соударений свободных электронов с ионами возрастает. Чем активнее тепловое движение решётки, тем труднее электронам пробираться сквозь промежутки между ионами (Представьте себе вращающуюся проходную дверь. В каком случае труднее проскочить через неё: когда она вращается медленно или быстро? :-)). Скорость упорядоченного движения электронов уменьшается, поэтому уменьшается и сила тока (при неизменном напряжении). Это и означает увеличение сопротивления.

Как опять-таки показывает опыт, зависимость сопротивления металлического проводника от температуры с хорошей точностью является линейной:

(1)

Здесь - сопротивление проводника при . График зависимости (1) является прямой линией (рис. 4 ).

Рис. 4.

Множитель называется температурным коэффициентом сопротивления . Его значения для различных металлов и сплавов можно найти в таблицах.

Длина проводника и его площадь поперечного сечения при изменении температуры меняются несущественно. Выразим и через удельное сопротивление:

и подставим эти формулы в (1) . Получим аналогичную зависимость удельного сопротивления от температуры:

Коэффициент весьма мал (для меди, например, ), так что температурной зависимостью сопротивления металла часто можно пренебречь. Однако в ряде случаев считаться с ней приходиться. Например, вольфрамовая спираль электрической лампочки раскаляется до такой степени, что её вольт-амперная характеристика оказывается существенно нелинейной.

Рис. 5. Вольт-амперная характеристика лампочки

Так, на рис. 5 приведена вольт-амперная характеристика автомобильной лампочки. Если бы лампочка представляла собой идеальный резистор, её вольт-амперная характеристика была прямой линией в соответствии с законом Ома. Эта прямая изображена синим пунктиром.

Однако по мере роста напряжения, приложенного к лампочке, график отклоняется от этой прямой всё сильнее и сильнее. Почему? Дело в том, что с увеличением напряжения ток через лампочку возрастает и больше разогревает спираль; сопротивление спирали поэтому также увеличивается. Следовательно, сила тока хотя и продолжит возрастать, но будет иметь всё меньшее и меньшее значение по сравнению с тем, которое предписывается «пунктирной» линейной зависимостью тока от напряжения.

На данном уроке мы познакомимся с тем, почему возникает электрический ток в металлах, поясним, почему металлы являются хорошими проводниками. Кроме того, изучим действия электрического тока и его направление. Мы рассмотрим эксперимент Рикке, подтверждающий то, что металлический проводник практически не меняется при протекании по нему электрического тока, выясним, какие действия тока больше всего используются человеком в технике и быту, а также поймём, почему направление тока не совпадает с направлением движения электронов.

Тема: Электрические явления

Урок: Электрический ток в металлах. Действия электрического тока. Направление тока

На предыдущих уроках мы изучили практически все понятия, связанные с возникновением электрического тока: электрические заряды, электрическое поле, источники тока, простейшие электрические цепи и электрические схемы. Теперь нам предстоит выяснить, как течёт электрический ток в металлах, какие действия оказывает электрический ток, а также направление тока.

Металлы, как мы выяснили из экспериментов на предыдущих уроках, хорошо проводят электрический ток. Для того чтобы пояснить этот факт, зададимся вопросом: а что же такое металлы?

Металлы, как правило, - это поликристаллические вещества (состоящие из множества кристаллов) (Рис. 1, 2).

Рис. 2. Структура железа ()

То есть, в металлах мы имеем дело с упорядоченной структурой атомов: каждый атом находится на своём конкретном месте.

Как мы уже знаем, вокруг ядра атомов движутся электроны.

Что же даёт возможность появления свободных электрических зарядов?

Дело в том, что дальние электроны (те, которые находятся на самых удалённых от ядра орбитах) довольно слабо связаны с ядром. Поэтому они могут довольно легко переходить от одного атома к другому. Такое беспорядочное движение электронов чем-то напоминает электронный газ. Если внутри металла нет электрического поля, то движение этих свободных электронов чем-то напоминает движение поднятого в воздух роя мошкары в летний день (Рис. 3).

Рис. 3. Движение электронов внутри металлического проводника ()

Всё изменяется, когда внутри металла появляется электрическое поле. Электрическое поле заставляет двигаться заряженные частицы. Ядра атомов остаются на месте, а вот электроны начинают упорядоченно двигаться.

Электроны, перескакивая от одного атома к другому, движутся в том направлении, куда им указывает электрическое поле. Это движение и называется электрическим током в металлах .

Мы знаем, что электрический ток - это направленное, упорядоченное движение заряженных частиц. В металлах в роли движущихся заряженных частиц выступают электроны . В других веществах это могут быть ионы или ионы и электроны.

Движение заряженных частиц (в металлах - электронов) происходит очень медленно (доли миллиметров в секунду). Возникает вопрос: почему же, когда мы нажимаем на выключатель, лампочка загорается практически мгновенно?

Дело в том, что внутри проводников с огромной скоростью (со скоростью света - приблизительно 300 000 километров в секунду) распространяется электрическое поле.

При замыкании цепи поле распространяется практически мгновенно. А уже вслед за полем начинают медленно двигаться электроны, причём сразу по всей цепи. Эту ситуацию можно сравнить с движением воды в водопроводе. Воду заставляет двигаться давление в трубах, которое при открытии крана распространяется практически мгновенно, заставляя «ближайшую» к крану воду выливаться. При этом по трубам движется вся вода под этим самым давлением. Получается, что давление - это аналог электрического поля, а вода - аналог электронов. Как только прекращается действие электрического поля, сразу прекращается упорядоченное движение электрических зарядов.

Возникает логичный вопрос: а не изменяется ли проводник из-за того, что из него «ушли» электроны? Опыт по подтверждению того, что все электроны одинаковые, был проведён немецким учёным Рикке (Рис. 4) тогда, когда на трамвайных линиях использовали три разных проводника: алюминиевый и два медных.

Рис. 4. Карл Виктор Рикке ()

Рикке в течение года наблюдал за последовательным соединением трёх проводников: медь + алюминий + медь. Поскольку ток в трамвайных линиях течёт довольно большой, то эксперимент позволял дать однозначный ответ: одинаковы ли электроны, которые являются носителями отрицательного заряда в разных проводниках.

За год масса проводников не изменилась, диффузии не произошло, то есть структура проводников осталась неизменной. Из этого следовал вывод, что электроны могут переходить из одного проводника в другой, но структура их при этом не изменится.

Поговорим теперь о том, какое действие оказывает электрический ток. За счёт чего он получил такое широкое применение в быту и технике?

Можно выделить три основных действия электрического тока:

1. Тепловое. При прохождении тока проводник нагревается. Это одно из самых главных действий тока, которое используется человеком. Самый простой пример - некоторые бытовые обогреватели (Рис. 5).

Рис. 5. Электрообогреватель ()

2. Химическое. Проводник может изменять химический состав при прохождении по нему тока. В частности, при помощи электрического тока добывают некоторые металлы в чистом виде, выделяя их из различных соединений. К примеру, таким образом получают алюминий (Рис. 6).

Рис. 6. Электролизный цех алюминиевого завода ()

3. Магнитное. Если по проводнику течёт ток, то магнитная стрелка вблизи такого проводника изменит своё положение.

Теперь поговорим о направлении электрического тока .

За направление электрического тока принимается направление движения положительных электрических зарядов.

Но только что мы говорили о том, что ток в металлах создают движущиеся электроны, которые имеют отрицательный заряд. Почему же возникает такое противоречие?

Когда возник вопрос о направлении электрического тока, ещё никто не знал о существовании электронов. Было решено считать, что ток движется в направлении движения положительных зарядов. Прошло время, учёные выяснили, что в металлах, в частности, движутся электроны, но было решено оставить всё в прежнем виде. Это связано с тем, что знак заряда нас практически не интересует, гораздо больше нас интересует само действие тока.

Движение электронов в проводнике противоположно направлению электрического поля (Рис. 7).

Рис. 7. Движение электронов в проводнике ()

На этом уроке мы выяснили, как течёт ток в металлах, узнали о действиях электрического тока, а также определили направление тока.

На следующем уроке мы начнём знакомиться с числовыми характеристиками тока.

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. - М.: Мнемозина.
  2. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. - М.: Просвещение.

Дополнительные р екомендованные ссылки на ресурсы сети Интернет

  1. Фестиваль педагогических идей «Открытый урок» ().
  2. Фестиваль педагогических идей «Открытый урок» ().

Домашнее задание

  1. П. 34-36, вопросы 1-4, стр. 81, вопросы 1-7, стр. 83, вопросы 1-3, стр. 84. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  2. В каких устройствах используется тепловое действие тока? Магнитное действие?
  3. Какие действия тока можно наблюдать, пропуская ток через морскую воду?

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает - ток есть. Если типичное сопутствующее току явление наблюдается - ток в цепи есть, и т. д.

Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.


В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, - это тоже тепловое действие тока.

Выделяемое на участке цепи количество теплоты зависит от приложенного к этому участку напряжения, значения протекающего тока и от времени его протекания ().

Преобразовав закон Ома для участка цепи, можно для вычисления количества теплоты использовать либо напряжение, либо силу тока, но тогда обязательно необходимо знать и сопротивление цепи, ведь именно оно ограничивает ток, и вызывает, по сути, нагрев. Или, зная ток и напряжение в цепи, можно так же легко найти количество выделяемой теплоты.

Химическое действие электрического тока

Электролиты, содержащие ионы, под действием постоянного электрического тока - это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) - положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом - отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Скажем, при электролизе медного купороса (CuSO4), катионы меди Cu2+ с положительным зарядом движутся к отрицательно заряженному катоду, где они получают недостающий заряд, и становятся нейтральными атомами меди, оседая на поверхности электрода. Гидроксильная группа -OH отдаст электроны на аноде, и в результате выделится кислород. Положительно заряженные катионы водорода H+ и отрицательно заряженные анионы SO42- останутся в растворе.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности - это и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.


Магнитное поле всегда порождается током, то есть движущимися электрическими зарядами, в частности - заряженными частицами (электронами, ионами). Противоположно направленные токи взаимно отталкиваются, однонаправленные токи взаимно притягиваются.

Такое механическое взаимодействие происходит благодаря взаимодействию магнитных полей токов, то есть это, в первую очередь, - магнитное взаимодействие, а уж потом - механическое. Таким образом, магнитное взаимодействие токов первично.

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах (например, в промышленных).

В простейшем виде световое действие электрического тока можно наблюдать в лампе накаливания, спираль которой разогревается проходящим через нее током до белого каления и излучает свет.

Для лампы накаливания на световую энергию приходится около 5% от подведенной электроэнергии, остальные 95% которой преобразуется в тепло.

Люминесцентные лампы более эффективно преобразуют энергию тока в свет - до 20% электроэнергии преобразуется в видимый свет благодаря люминофору, принимающему от электрического разряда в парах ртути или в инертном газе типа неона.


Более эффективно световое действие электрического тока реализуется в светодиодах. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Лучшие излучатели света относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), например GaAs, InP, ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). КПД светодиода как источника света доходит в среднем до 50%.

Как было отмечено выше, каждый проводник, по которому течет электрический ток, образует вокруг себя . Магнитные действия превращаются в движение, например, в электродвигателях, в магнитных подъемных устройствах, в магнитных вентилях, в реле и т. д.


Механическое действие одного тока на другой описывает закон Ампера. Впервые этот закон был установлен Андре Мари Ампером в 1820 для постоянного тока. Из следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных - отталкиваются.

Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна току в проводнике и векторному произведению элемента длины проводника на магнитную индукцию.

На этом принципе основана , где ротор играет роль рамки с током, ориентирующейся во внешнем магнитном поле статора вращающим моментом M.

И вращающихся вокруг них электронов. Электроны притягиваются ядрами, и чтобы их «оторвать», требуется приложить некоторое усилие. В таком случае мы будем иметь положительно заряженное ядро и отрицательно заряженные электроны.

Получается, что чтобы в проводнике появился электрический ток, надо вырвать множество электронов из оков атомов и сопровождать их на всем пути действия тока, чтобы их не захватили новые атомы. Очевидно, что для этого потребуется довольно приличная сила. Однако, при возникновении электрического поля , ток начинает бежать в металлических проводниках без всякого усилия. Как же это получается? Какова природа электрического тока в металлах, что они могут беспрепятственно проводить ток практически без потерь?

Природа тока в металлах

Дело в том, что в металлах структура строения вещества такова, что частицы расположены в кристаллических решетках, образованных положительными ионами, то есть ядрами атомов. А отрицательные ионы, то есть электроны, свободно перемещаются между ядрами, не будучи связанными с ними. Заряд всех электронов в спокойном состоянии компенсирует положительный заряд ядер. Когда возникает действующее на электроны электрическое поле, они начинают двигаться в одном направлении по всей длине проводника.

Так образуется электрический ток в металлах. Скорость движения каждого конкретного электрона невелика - около нескольких миллиметров в секунду. Но скорость распространения электрического поля равна скорости света, около 300 000 км/с. Электрическое поле приводит в движение все электроны на своем пути, и ток распространяется в металлических проводах со скоростью света.

Действие электрического тока

С какой бы скоростью ни двигались электроны в металле, мы не можем увидеть это воочию - они слишком малы. Судить о наличии в проводнике тока, мы можем лишь по производимому им действию. Действие электрического тока может быть очень разнообразным. Тепловое действие тока проявляется в нагревании проводника. Это действие широко используется в электронагревательных приборах: чайниках, обогревателях, фенах.

Еще ток обладает химическим действием. В некоторых растворах при воздействии электрическим током выделяются различные вещества. Так добывают чистые вещества из солей и щелочей. Ток обладает также и магнитным действием. Причем магнитное действие тока проявляется всегда и в любых проводниках. Заключается магнитное действие тока в том, что вокруг проводника с током образуется магнитное поле. Это поле можно уловить и измерить. Для использования магнитного действия тока сооружают спиральные обмотки из изолированных проводов и пропускают по ним ток. Таким образом, концентрируют и усиливают магнитное действие тока и создают электромагниты.

Электричество и магнетизм вообще неразрывно связаны друг с другом. Самый простой пример: притягивание наэлектризованной расческой волос - есть не что иное, как магнитное действие электрического заряда. Человек очень активно использует магнитные свойства тока. От выработки электроэнергии, в которой преобразуют механическую энергию в электрическую с помощью магнитов, до конкретных электроприборов, производящих обратное преобразование электричества в механическую работу - везде используется магнитное действие тока.

Направление тока

За направление электрического тока в цепи принято направление движения положительных зарядов. А так как мы знаем, что двигается не положительный, а отрицательный заряд - электроны, то соответственно направление тока - это направление, в котором двигались бы положительные заряды, если бы они перемещались. Это направление, противоположное движению электронов.

Почему приняли такое направление? Дело в том, что когда-то не знали, за счет чего в реальности передается электрический заряд, но электричество использовали, и надо было создавать правила и законы для расчетов. И условно приняли за направление тока направление движения положительных зарядов. А когда разобрались, уже никто не стал переписывать заново законы и правила. Поэтому так и осталось. А куда конкретно двигаются электроны, учитывают в случае необходимости.

Нужна помощь в учебе?

Предыдущая тема: Электрическая цепь и составные её части
Следующая тема:   Сила тока: природа, формула, измерение амперметром

Металлы в твёрдом состоянии имеют кристаллическое строение.
Модель металла - кристаллическая решетка, в узлах которой частицы совершают хаотичное колебательное движение.

Обрати внимание!

В узлах кристаллической решётки расположены положительные ионы. В пространстве между ними движутся свободные электроны.

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален. Свободные электроны движутся в нём беспорядочно. Если создать в металле электрическое поле, то свободные электроны начнут двигаться направленно (упорядоченно), т.е. возникнет электрический ток. Однако беспорядочное движение электронов сохраняется.

Обрати внимание!

Электрический ток в металлах представляет собой упорядоченное движение свободных электронов.

Какова же скорость движения электронов в проводнике под действием электрического поля? Невелика - всего несколько миллиметров в секунду, а иногда и ещё меньше.
Если возникает в проводнике электрическое поле, оно с огромной скоростью распространяется по всей длине проводника (близкой к скорости света - 300 000 км/с), одновременно начинают двигаться электроны в одном направлении по всей длине проводника.
Доказательством того, что ток в металлах обусловлен электронами, явились опыты. Опыт Мандельштама и Папалекси был проведён в 1916 году. Цель опыта состояла в проверке того, есть ли масса у носителя электрического тока - электрона. Если масса у электрона есть, то он должен подчиняться законам механики, в частности, закону инерции. К примеру, если движущийся проводник резко затормозить, то электроны ещё некоторое время будут двигаться в том же направлении по инерции.
Для этой проверки исследователи вращали катушку с проходящим током, а затем резко останавливали её. Возникающий бросок тока регистрировали с помощью телефона.
По щелчку тока в телефонах Мандельштам и Папалекси установили, что электрон обладает массой. Но измерить эту массу они не смогли. Поэтому этот опыт - качественный. Позже американские физики Толмен и Стюарт, используя ту же идею вращения катушки, измерили массу электрона. Для этого они измеряли возникающий при торможении катушки заряд на её выводах.

Электрический ток может существовать не только в металлах, но и в других средах: в полупроводниках, газах и растворах электролитов. Носители электрических зарядов в разных средах разные.

Обрати внимание!

Так, в растворах электролитов (солей, кислот и щелочей) носителями являются положительные и отрицательные ионы, в газах - положительные и отрицательные ионы, а также электроны. В полупроводниках носителями заряда являются электроны и дырки (дырка - придуманная частица для объяснения механизма проводимости, по сути - свободное место, не занятое электроном).

Из полупроводников изготавливают полупроводниковые приборы. Вот некоторые из них:

Фотоэлемент

Фоторезистор

Фотодиоды

Интегральные схемы

Транзисторы

Полупроводники при низкой температуре не проводят электрический ток, т.е. являются диэлектриками. При повышении температуры число носителей электрического заряда увеличивается, полупроводник становится проводником. Почему это происходит? Валентные электроны, находящиеся на внешней оболочке атома, становятся свободными, и под действием электрического поля в полупроводнике возникает электрический ток. Аналогичный процесс происходит в полупроводнике при воздействии на него света, примесей и т.д.
Изменение электропроводимости полупроводников под действием температуры позволяет применять их в качестве термометров.

Изменение электропроводимости полупроводников под воздействием света используется в фотосопротивлениях. Их применяют для сигнализации, при управлении производственными процессами на расстоянии, сортировке деталей. В экстренных ситуациях они позволяют автоматически останавливать станки и конвейеры, предупреждая несчастные случаи.

Исторически принято следующее:

Направление тока совпадает с направлением движения положительных зарядов в проводнике.

При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения электронов.

Прохождение тока по проводнику сопровождается следующими его действиями:

Магнитным (наблюдается во всех проводниках).

Используя это свойство, можно найти место обрыва фазового провода приборами, реагирующими на изменения в электромагнитном поле, к примеру, индикаторной отвёрткой с фазоискателем.

Если проволочную рамку, по которой течёт ток, поместить между полюсами магнита, то она станет поворачиваться. Данное явление используют в устройстве гальванометра.

Стрелка гальванометра связана с подвижной катушкой, находящейся в магнитном поле. Когда по катушке протекает ток, стрелка отклоняется. Таким образом, с помощью гальванометра можно сделать вывод о наличии тока в цепи. Магнитное действие тока проявляется вне зависимости от агрегатного состояния вещества. При замыкании ключа можно наблюдать, как проволока, намотанная на гвоздь, начинает притягивать небольшие железные предметы.



Статьи по теме: