Какой вид электрического тока вырабатывают электрогенераторы электростанций. Генерирование электрической энергии

Электрический генератор - электрическая машина, предназначенная для преобразования механической энергии в энергию электрического поля. Источниками механической энергии может быть вода, пар, ветер , двигатель внутреннего сгорания и другие.

История

Первыми электрическими генераторами были – электростатические генераторы. Принцип их действия был основан на явлении статического электричества . Но широкого применения в промышленности эти генераторы не получили, так как они развивали высокое напряжение при малом токе. Ярким примером таких генераторов стал генератор Ван де Граафа. Этот генератор был изобретен Робертом Ван де Граафом в 1929 году и в основном служил для ядерных исследований.

Затем люди начали предпринимать попытки по созданию электромагнитных генераторов, то есть генераторов, работа которых основана на явлении электромагнитной индукции. Одним из первых в этом направлении стал гениальный физик Майкл Фарадей, который как раз и открыл явление электромагнитной индукции . Также он сформировал принцип работы генераторов, который был назван законом Фарадея. Его суть заключалась в том, что в проводнике, движущемся перпендикулярно магнитному полю, образовывалась разность потенциалов. Доказательством этого принципа стал диск Фарадея. Это простейший генератор, который представлял из себя медный диск, вращающийся между концами подковообразного магнита.

В 1832 году Ипполит Пикси построил первую динамо-машину. Она представляла из себя машину, в которой имелся статор, создающий постоянное магнитное поле и нескольких обмоток, которые в нем вращались. Ток снимался с помощью механического коммутатора. По сути это был первый генератор постоянного тока.

Потом развитие промышленности пошло вверх, и были изобретены генераторы переменного тока , асинхронные и постоянные двигатели.

Принцип действия

Принцип действия электрического генератора основан на взаимодействии проводника и магнитного поля, в котором он движется. Как всегда приводится классический пример с рамкой в магнитном поле. Когда рамка вращается, её пересекают линии магнитной индукции, при этом в рамке образовывается электродвижущая сила. Эта ЭДС заставляет ток течь по рамке и с помощью контактных колец попадать во внешнюю цепь. Примерно так устроен простейший электрический генератор.

Применение

Применение электрических генераторов обширно. Они применяются практически везде, где это только возможно. Снабжают
наши дома электроэнергией, заряжают аккумуляторы в автомобилях, используются в промышленности и многое другое.

В настоящее время стали популярны автономные бензиновые и дизельные электрогенераторы, которые могут служить источниками электрической энергии при её отключении, либо вообще при её отсутствии. Такие генераторы используются в быту и в строительстве, так как форма тока имеет искажения, то без применения специального инвертора, подключать к ним какие-то электронные устройства не целесообразно, так как они могут выйти из строя.

Они могли вырабатывать высокое напряжение , но имели маленький ток . Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:

  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа .

Динамо-машина Йедлика

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Работа динамо-машины основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первая динамо-машина была построена Hippolyte Pixii в 1832.

Пройдя ряд менее значимых открытий динамо-машина стала прообразом из которого появились дальнейшие изобретения, такие как двигатель постоянного тока , генератор переменного тока, синхронный двигатель , роторный преобразователь.

Классификация

  • Электромеханические
    • Индукционные
  • Термоионные генераторы
  • Биогенераторы
  • Электромеханические индукционные генераторы

    На сегодняшний день наиболее распространённым типом является индукционный электромеханический генератор. Абсолютное большинство тепловых, гидравлических, ветряных, атомных, приливных, геотермальных электростанций, а так же некоторые солнечные используют этот тип генератора.

    Электромеханический генера́тор - это электрическая машина , в которой механическая работа преобразуется в электрическую энергию .

    - устанавливает связь между ЭДС и скоростью изменения магнитного потока пронизывающего обмотку генератора.

    Классификация электромеханических генераторов

    • По типу первичного двигателя:
      • Турбогенератор паровой турбиной или газотурбинным двигателем ;
      • Гидрогенератор - электрический генератор, приводимый в движение гидравлической турбиной;
      • Дизель-генератор - электрический генератор, приводимый в движение дизельным двигателем ;
      • Газотурбинный генератор - электрический генератор, приводимый в движение газотурбинным двигателем ;
      • Паро-генератор - электрический генератор, приводимый в движение паровой турбиной ;
      • Ветро-генератор - электрический генератор, преобразующий в электричество кинетическую энергию ветра;
    • По виду выходного электрического тока
      • Генератор постоянного тока
        • Коллекторные генераторы
        • Вентильные генераторы
      • Генератор переменного тока
        • Однофазный генератор

    В состав электрогенераторов входят два основных агрегата – силовая установка, которая приводит в действие генератор и альтернатор. В данной статье будут рассмотрены виды генераторов в зависимости от типа альтернатора.

    Базовая основа для установок, которые генерируют электричество при помощи электромагнитов, была разработана британским экспериментатором и физиком Майклом Фарадеем в 1831 году, который затем построил диск Фарадея, являющийся одним из первых . После этого электрогенераторы постоянно совершенствовались в течение полутора веков. Были созданы асинхронные и синхронные альтернаторы, одно и трехфазные, без инверторного управления и с ним. В чем отличие всех этих типов?

    В синхронном альтернаторе электроэнергия производится с совпадением частоты вращения статора и ротора. Электродвижущая сила или ЭДС создается, когда поле, сформированное магнитными полюсами ротора, пересекает стартерную обмотку. В таком генераторе ротор является либо постоянным магнитом, либо электромагнитом, который имеет число полюсов кратное двум. Двухполюсный ротор, который имеет частоту вращения 3000 об/мин, устанавливается в резервных генераторах, а в основных генераторах, которые вырабатывают электроэнергию круглые сутки, ротор вращается с частотой 1500 об/мин.

    После запуска синхронного генератора, ротор формирует довольно слабое магнитное поле, но постепенно количество его оборотов возрастает и ЭДС повышается. На выходе стабильность напряжения контролируется с помощью блока автоматической регулировки (AVR), который изменяет магнитное поле во время поступления напряжения на ротор с обмотки возбуждения. При работе синхронных генераторов возможно возникновение «реакции якоря», то есть при активации индуктивной нагрузки генератор размагничивается и при этом падает напряжение. А в том случае, когда подается емкостная нагрузка, наоборот, генератор подмагничивается и напряжение растет.

    Преимуществом синхронных генераторов заключается в стабильном напряжении на выходе, но их недостатком является склонность к перегрузкам, которые возможны тогда, когда нагрузки растут и превышают допустимый уровень, то есть ток в роторной обмотке чрезмерно увеличивается блоком AVR.

    Синхронный генератор способен кратковременно произвести на выдаче такой ток, который может превысить номинальное значение в несколько раз. Так как некоторым электроприборам, к которым относятся электродвигатели, компрессоры, насосы и некоторые другие, требуется повышенный стартовый ток, и они оказывают повышенную нагрузку на сеть, то лучшим источником, как основного, так и резервного питания для них будут как раз такие альтернаторы.

    Вращение ротора в таких генераторах немного опережает по оборотам магнитное поле, которое создается статором. У таких электрогенераторов в комплекте идут роторы с двумя видами обмотки – короткозамкнутой и фазной. У асинхронного генератора принцип работы точно такой же, как и у его синхронного аналога – статор создает магнитное поле на вспомогательной обмотке, которое затем передается ротору и формирует на статорной обмотке ЭДС. Но разница заключается в том, что частота, с которой вращается магнитное поле, неизменна, то есть недопустима ее регулировка. Именно поэтому и частота электрического тока, который вырабатывается альтернатором, и напряжение, имеют прямую связь с числом оборотов ротора, которые в свою очередь зависят от стабильной работы приводного двигателя электрогенератора.

    Асинхронные альтернаторы имеют высокую защиту от действий извне и довольно малочувствительны к коротким замыканиям, благодаря чему они отлично подходят для сварочных аппаратов. Данные генераторы также хорошо подходят для запитывания приборов, имеющих омическую (активную) нагрузку, которые преобразуют практически всю электроэнергию, поставляемую им, в работу – компьютеры, осветительные лампы, кухонные конфорки, нагреватели и т.п.

    Высокая реактивная (стартовая) нагрузка, которая возникает при включении, например, насосного оборудования, длится около секунды, но при этом электрогенератор должен выдержать ее. А дело вот в чем – допустим, что вам необходимо сдвинуть с места тяжелую тележку, которая установлена на горизонтальной поверхности. Для того, чтобы сдвинуть тележку, необходимо приложить намного больше усилий, что нужно для того, чтобы поддерживать ее движение. Именно такая же ситуация возникает при запуске компрессора холодильника или сплит-системы, электродвигателей и любых насосов, поэтому справиться с ней под силу только синхронному электрогенератору.

    Реактивные нагрузки в центральной электросети компенсируются при помощи дросселей или конденсаторов, а также с помощью специально повышенного сечения электрических кабелей и трансформаторов.

    У асинхронного альтернатора есть существенный недостаток – от не способен выдерживать повышенные нагрузки. Но, не смотря на это, он проще по конструкции и дешевле, чем синхронный аналог. Помимо этого, асинхронные электрогенераторы имеют закрытую конструкцию, которая способна обеспечить им хорошую защиту от влаги и внешних загрязнений.

    Трехфазный и однофазный генератор

    Некоторые люди убеждены, что однофазный генератор электроэнергии хуже, чем трехфазный. Логику тех, кто не разбирается в электричестве, легко понять – одна фаза меньше, чем три, поэтому и хуже. На самом деле выбирать между трех- и однофазным энергоснабжением необходимо исходя из нужд конечных потребителей.

    Электрогенератор, который имеет три фазы, нужен не для того, чтобы питать три группы однофазных потребителей, а для того, чтобы питать трехфазные устройства.

    Бывает так, что разводка трехфазного ввода в доме выполняется на однофазные группы, но это выгодно делать не жильцам, а электрикам, так как для этого нужна очень дорогая защита энергосистемы, а ее монтаж стоит очень дорого. Почти вся современная бытовая техника является однофазной, а трехфазными были старые модели электродвигателей и электрических плит.

    У трехфазных электродвигателей есть один существенный недостаток – при мощности альтернатора, к примеру, 10 кВт, мощность каждой фазы будет 3,3 кВт. Среди фаз максимально возможное смещение мощностной нагрузки не может превышать 25% от номинала, который равен 1/3 общей мощности генератора. Исходя из этого, однофазный генератор, имеющий мощность 4,5 кВт, будет мощнее, чем трехфазный генератор на 10 кВт.

    Инверторный альтернатор имеет электронный блок управления, который способен обеспечить выработку электричества отличного качества, с отсутствием при этом каких-либо перепадов напряжения. Инверторные альтернаторы отлично подходят для питания таких потребителей, которые нуждаются только в номинальном напряжении.

    Устанавливается инверторная система управления на синхронный альтернатор и действует в три ступени: производит напряжение с частотой 20 Гц; затем из него формирует постоянный ток 12 В; далее постоянный ток преобразуется в переменный номинальный, имеющий частоту 50 Гц.

    Инверторные генераторы делятся на три типа по импульсному напряжению на выходе:

    1. Для самых дешевых моделей характерен прямоугольный импульс. Такие модели могут питать лишь строительные электроинструменты. Такой тип инверторов уже почти не продается, так как он имеет малую популярность и очень ограниченные возможности.
    2. Генераторы средней ценовой зоны могут обеспечить трапециевидный импульс. Это позволяет им питать довольно сложные бытовые электроприборы, такие как холодильник. Но для наиболее чувствительной техники такое качество напряжения часто оказывается недостаточным.
    3. При синусоидальном импульсе создаются самые лучшие условия для работы любых приборов – от самых простых до самых сложных. Синусоидальное напряжение имеет стабильные характеристики и точно соответствует всем параметрам электричества, которое поставляется центральными электросетями. Стоимость подобных инверторов гораздо выше, чем у двух других типов.

    Достоинства генераторов-инверторов:

    • гораздо меньший вес и размеры, если сравнивать с простыми генераторами такой же мощности;
    • меньшая шумность во время работы, которая достигается за счет того, что изменяется скорость вращения ротора;
    • очень малый расход топлива, который достигается с помощью электронного управления процессом выработки электроэнергии. Генератором производится такое количество энергии, которое требуется в данный момент всем потребителям, а его производительность уменьшается или возрастает при соответственном уменьшении или увеличении числа потребителей;
    • так как в их основе лежит синхронный альтернатор, инверторы могут кратковременно снабжать высоким пусковым током энергоемкое оборудование. К тому же, у некоторых моделей генераторов-инверторов есть функция «режим перегрузки», при котором инвертор может производить мощности на 50% больше, чем номинальная. Но этот режим может действовать примерно 20-30 минут;
    • хорошая наработка на отказ – около 3 тысяч часов.

    Недостатки:

    • максимальное время непрерывной работы составляет 8 часов;
    • имеют более высокую стоимость по сравнению с не инверторными аналогами такой же мощности;
    • довольно чувствительный к температурным перепадам электронный блок управления, а его ремонт достаточно дорог;
    • максимальная мощность у генераторов подобного типа – 7,2 кВт, а моделей, имеющих большую мощность, нет.

    Выводы

    Все рассмотренные выше типы генераторов, кроме инверторных, могут применяться не только в маломощных бытовых моделях электростанций, но и в крупных генераторных системах, которые вырабатывают мегаватты электроэнергии.

    Электрогенераторы - это электрические машины, преобразующие механическую энергию в электрическую энергию.

    Действие электрических генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле, наводится электродвижущая сила - ЭДС .

    Электрические генераторы постоянного тока

    Долгое время электрические генераторы постоянного тока были единственными типом источника электроэнергии.

    В обмотке якоря генератора постоянного тока индуктируется переменный ток, который преобразуется в постоянный ток электромеханическим выпрямителем - коллектором. Однако процесс выпрямления тока коллектором связан с повышенным износом коллектора и щеток, особенно при большой частоте вращения якоря генератора .

    1– коллектор; 2 – щетки; 3 – магнитные полюса; 4 – витки; 5 – вал; 6 – якорь

    Генераторы постоянного тока различают по характеру их возбуждения - независимого возбуждения и самовозбуждением. В генераторах с электромагнитным возбуждением обмотка возбуждения, располагаемая на главных полюсах, подключается к независимому источнику питания. Генераторы с магнитоэлектрическим возбуждением возбуждаются постоянными магнитами, из которых изготовляются полюсы машины. Генераторы постоянного тока находят применение в тех отраслях промышленности, где по условиям производства предпочтительным является постоянный ток - на предприятиях металлургической и электролизной промышленности, на транспорте, судах и др. Генераторы постоянного тока используются на электростанциях в качестве возбудителей синхронных генераторов и .

    Мощность генераторов постоянного тока может достигать десятка мегаватт.

    Генераторы переменного тока

    Генераторы переменного тока позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется несколько типов индукционных генераторов .

    Они состоят из электромагнита или постоянного магнита, создающие магнитное поле, и обмотки, в которой индуцируется переменная ЭДС. Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока через каждый виток. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, - в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором.

    Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим. Этим обеспечивается наибольшее значение потока магнитной индукции. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными.

    Подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки. Неподвижные пластины - щетки - прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том же валу.

    В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны. Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

    Обмотки возбуждения синхронных генераторов бывают двух типов: с явнополюсными и неявнополюсными роторами. В генераторах с явнополюсными роторами полюса, несущие обмотки возбуждения, выступают из индуктора. Генераторы такого типа рассчитаны на сравнительно низкие частоты вращения, для работы с приводом от поршневых паровых машин, дизельных двигателей, гидротурбин. Паровые и газовые турбины используются для привода синхронных генераторов с неявнополюсными роторами. Ротор такого генератора представляет собой стальную поковку с фрезерованными продольными пазами для витков обмотки возбуждения, которые обычно выполняются в виде медных пластин. Витки закрепляются в пазах, а поверхность ротора шлифуется и полируется для снижения уровня шума и потерь мощности, связанных с сопротивлением воздуха.

    Обмотки генераторов по большей части делают трехфазными - на выходных зажимах генератора вырабатываются три синусоидальных напряжения переменного тока, поочередно достигающих своего максимального амплитудного значения. В механике редко встречается подобное сочетание движущихся частей, которые могли бы порождать энергию столь же непрерывно и экономично.

    Мощные синхронные генераторы охлаждаются водородом . Современный генератор электрического тока - это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра.

    Генераторы были придуманы для того, чтобы обеспечить бесперебойную подачу электроэнергии за счет сжигания других видов топлива, в случае потери первой. Потеря электроэнергии в современном мире не редкость - ремонты старых электростанций, тяжелые погодные условия и другие форс-мажорные обстоятельства. Для дачных поселков, к которым еще не подведена электромагистраль, такое оборудование является единственным выходом из трудной ситуации.

    Электрогенераторы делятся по видам потребляемого топлива, размером, количеством фаз, мощностью. Именно мощность относит автономную электростанцию в группу профессиональных или бытовых условий. Профессиональные станции выработки электроэнергии выделяются огромной мощностью для обслуживания электрического оборудования и возможностью долгой и интенсивной эксплуатации. Такие типы электростанций стоят очень дорого и в обслуживании недешево обходятся. Потому, если это аварийный вид потребления энергии, допустим, для производства, то в экстренных случаях аренда генератора - это лучший выход. Это услуга сэкономит финансы в плане покупки, а также ремонта.

    Бытовые электростанции проще в эксплуатации, портативны, относительно недорогие. При выборе этого оборудования надо обращать внимание на мощность прибора. Но предварительно нужно просчитывать количество потребляемой электроэнергии. Не забывать учитывать коэффициент пускового тока, на который умножается суммарное количество киловатт со всего оборудования, подключаемого к генератору. Коэффициент зависит от типа прибора: для лампочки, допустим, он равен единице, а для холодильника или кондиционера - 3,5. Но в каждом отдельном случае нужно считать потребление согласно техническим характеристикам бытовой техники. Генераторы по типам потребляемого топлива делятся на виды:

    • дизельные;
    • бензиновые;
    • газотурбинные;
    • инверторные.

    Самыми распространенными видами портативных электростанций, благодаря доступности сырья для работы, являются первые три в списке.

    Дизельный генератор

    Данный образец оборудования является электростанцией с дизельным двигателем. Используется как для основного, так и для аварийного источника питания. Стоимость самого прибора относительно других видов выше, но учитывая экономность в потреблении сырья и высокую длительность срока эксплуатации можно сказать, что это несущественный недостаток. Ремонт, в сравнении с бензиновым, обойдется дороже за счет запчастей, но экономия на высокой теплотворной способности, сведет к минимуму сомнения о покупке.

    Бензиновые генераторы

    Первое преимущество станции с бензиновым двигателем - это компактность и портативность. Стоимость этого типа оборудования относительно низкая. Следующим плюсом есть низкая шумопроизводительность. За счет высокооктанового бензина двигатель внутреннего сгорания обеспечивает тихую работу электрогенератора. Решающей привилегией над дизельной станцией является экологичность. Чтобы двигатель бензиновой установки работал дольше надо вовремя производить ремонт в специальных центрах обслуживания и менять быстроизнашивающиеся материалы.

    Газотурбинные генераторы

    Эта газотурбинная установка нужна для получения газа на продолжения рабочей деятельности бытовых котлов, промышленных котельных, другого нагревательного и сушильного оборудования, а также газовых турбин. Газогенератор благодаря термохимии и кислороду превращает твердые виды топлива в горючий газ. Это альтернатива жидкому топливу и природному газу.

    Инверторные генераторы

    Появление инверторного генератора помогло сделать следующий шаг в будущий прогресс цивилизованного населения. Звукопоглощающая система, высокая экологичность, защита от перегрузки и сниженное потребления топлива - это только основные преимущества нового поколения очень компактного и удобного цифрового генератора энергии.



    Статьи по теме: