Какое выражение является законом сохранения электрического заряда. Электрический заряд, закон сохранения электрического заряда

Электростатика – раздел, изучающий статические (неподвижные) заряды и связанные с ними электрические поля.

Перемещение зарядов либо отсутствует, либо происходит так медленно, что возникающие при движении зарядов магнитные поля ничтожны. Сила взаимодействия между зарядами определяется только их взаимным расположением. Следовательно, энергия электростатического взаимодействия – потенциальная энергия.

Несмотря на обилие различных веществ в природе, существуют только два вида электрических зарядов: заряды подобные тем, которые возникают на стекле, потертом о шелк, и заряды, подобные тем, которые появляются на янтаре, потертом о мех. Первые были названы положительными, вторые отрицательными зарядами. Назвал их так Бенджамин Франклин в 1746 г.

В целом заряд атома любого вещества равен нулю, так как положительный заряд ядра атома компенсируется противоположным зарядом электронных оболочек атома. Очень сильное взаимодействие между зарядами практически исключает самопроизвольное появление заряженных макроскопических тел. Так, сила кулоновского притяжения между электроном и протоном в атоме водорода в 1039 раз больше их гравитационного взаимодействия.


Известно, что одноименные заряды отталкиваются, разноименные – притягиваются. Далее, если поднести заряженное тело (с любым зарядом) к легкому – незаряженному, то между ними будет притяжение – явление электризации легкого тела через влияние . На ближайшем к заряженному телу конце появляются заряды противоположного знака (индуцированные заряды) это явление называется электростатической индукцией.

Опыт показывает, что возникновение заряда на любом теле сопровождается появлением заряда такой же величины, но противоположного знака на другом теле. Например, при трении стеклянной палочки о шелк заряжаются оба тела: палочка отрицательно, шелк положительно.

Таким образом, всякий процесс заряжения есть процесс разделения зарядов . Сумма зарядов не изменяется, заряды только перераспределяются. Отсюда следует закон сохранения заряда – один из фундаментальных законов природы, сформулированный в 1747 г. Б. Франклином и подтвержденный в 1843 г. М. Фарадеем: алгебраическая сумма зарядов, возникающих при любом электрическом процессе на всех телах, участвующих в процессе всегда равна нулю . Или короче: суммарный электрический заряд замкнутой системы не изменяется .

(Доступны демонстрации по темам "Сохранение заряда " и "Виды зарядов ".).

Электрические заряды не существуют сами по себе, а являются внутренними свойствами элементарных частиц – электронов, протонов и др.

Опытным путем в 1914 г. американский физик Р. Милликен показал что электрический заряд дискретен . Заряд любого тела составляет целое кратное от элементарного электрического заряда .

,

Где n – целое число. Электрон и протон являются соответственно носителями элементарных отрицательного и положительного зарядов.

Например, наша Земля имеет отрицательный заряд Кл, это установлено по измерению напряженности электростатического поля в атмосфере Земли.

Большой вклад в исследование явлений электростатики внес знаменитый французский ученый Ш. Кулон. В 1785 г. он экспериментально установил закон взаимодействия неподвижных точечных электрических зарядов.

Опыты однозначно показывают, что при электризации тел всегда появляются заряды противоположных знаков. Если одно из двух тел вследствие взаимодействия станет отри-цательно заряженным, то другое будет иметь положительный заряд.

Возьмем два электрометра с одинаковы-ми шарами и подготовим их к измерению электрических зарядов. Для этого заземлим их металлические корпуса.

Пластинку из органического стекла по-трем пластинкой, поверхность которой по-крыта бумагой. Если после этого коснемся металлических шариков каждой пластинкой, то увидим, что стрелки гальванометров от-клонятся на одинаковый угол (рис. 4.10). Для определения знака полученных зарядов под-несем поочередно к обоим шарикам эбо-нитовую палочку, потертую мехом. Один элект-рометр уменьшит показания, а другой — уве-личит. Это свидетельствует о том, что шары электрометров имеют заряды противополож-ных знаков. Проверить эти утверждения мож-но с помощью другого опыта. Для этого со-единим проволокой на изоляционной ручке оба шара на электрометрах. Стрелки обоих электрометров сразу упадут до нуля (рис. 4.11). Это свидетельствует о полной нейтрализации зарядов. Анализ проведенных опытов пока-зывает, что в природе действует закон со-хранения электрических зарядов .

Закон со-хранения электрических зарядов . В замкнутой системе алгебраическая сум-ма электрических зарядов тел, составляющих эту систему, остается постоянной.

Q 1 + Q 2 + Q 3 + … + Q n = const.

Бенджамин Франклин (1706—1790) — вы-дающийся американский политический деятель; работал в области физики: раз-работал теорию, объясняющую электри-зацию перетеканием «электрической жид-кости», ввел понятие положительного и отрицательного заряда; исследовал элект-рические явления в атмосфере.

впервые был сформулирован американским ученым Б. Франклином в 1747 г.

При решении физических задач с ис-пользованием закона сохранения электри-ческого заряда значения электрических за-рядов используются с их знаками.

Ученым известны физические процессы, в ходе которых из электромагнитного излу-чения образуются элементарные частицы. Типичный пример такого явления — обра-зование электрона и позитрона из γ-излу-чения, появляющегося при радиоактивных преобразованиях вещества. Многочислен-ные исследования однозначно доказали, что электрон, имеющий отрицательный заряд, всегда появляется в этих преобразованиях в паре с позитроном, имеющем положитель-ный заряд. Алгебраическая сумма зарядов электрона и позитрона равняется нулю. Электромагнитное излучение не имеет заря-да вообще. Таким образом,

в реакции обра-зования электронно-позитронной пары дейст-вует закон сохранения заряда .

q электрона + q позитрона = 0.

Позитрон — элементарная ча-стица, имеющая массу, при-близительно равную массе электрона; заряд позитрона положительный и равен заряду электрона.

На основании закона сохранения элект-рического заряда объясняется электризация макроскопических тел.

Как известно, все тела состоят из ато-мов, в состав которых входят электроны и протоны . Количество электронов и прото-нов в составе незаряженного тела одина-ковое. Поэтому такое тело не проявляет электрического действия на другие тела. Если же два тела находятся в тесном кон-такте (при натирании, сжатии, ударе и т.п.), то электроны, связанные с атомами зна-чительно слабее, чем протоны, переходят с одного тела на другое. Материал с сайта

Тело, на которое перешли электроны, будет иметь их избыток. Согласно закону сохранения электрический заряд этого тела будет равняться алгебраической сумме по-ложительных зарядов всех протонов и зарядов всех электронов. Этот его заряд будет отрицательным и по значению равным сум-ме зарядов избыточных электронов.

У тела с излишком электронов отрицательный заряд.

Тело, утратившее электроны, будет иметь положительный заряд, модуль которого бу-дет равен сумме зарядов электронов, поте-рянных телом.

У тела, имеющего положитель-ный заряд, электронов мень-ше, чем протонов.

Закон сохранения электрического заряда действует независимо от того, движутся за-ряженные тела или нет. Такое свойство заряда называется инвариантностью. Заряд электрона равняется 1,6 . 10 -19 Кл как при скорости 200 м/с, так и при скорости 100 000 км/с. Если бы было иначе, то электроны имели бы одни свойства в свободном состоянии и совершенно другие — в атоме. А это наукой не установлено.

Электрический заряд не изме-няется при переходе тела в другую систему отсчета.

На этой странице материал по темам:

  • Законы сохранения шпора

  • Закон сохранения электрического заряда конспект по физики

  • Закон сохранения электрического заряда шпаргалка

  • Закон сохранения энергии. электризация тел.

  • Опыты подтверждающие закон сохранения электрического заряда

Вопросы по этому материалу:

При электризации тел выполняется закон сохранения электрического заряда . Этот закон справедлив для замкнутой системы. В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной . Если заряды частиц обозначить через q 1 , q 2 и т.д., то

q 1 + q 2 + q 3 + … + q n = const.

Основной закон электростатики – закон кулона

Если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно не влияют на взаимодействия между ними. В таком случае эти тела можно рассматривать как точечные.

Сила взаимодействия заряженных тел зависит от свойств среды между заряженными телами.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними. Эту силу называют кулоновской.

|q 1 | и |q 2 | - модули зарядов тел,

r – расстояние между ними,

k – коэффициент пропорциональности.

F - сила взаимодействия

Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела.

Единица электрического заряда

Единица силы тока – ампер.

Один кулон (1 Кл) – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А

g [Кулон=Кл]

е=1,610 -19 Кл

-электрическая постоянная

БЛИЗКОДЕЙСТВИЕ И ДЕЙСТВИЕ НА РАССТОЯНИИ

Предположение о том, что взаимодействие между удаленными друг от друга телами всегда осуществляется с помощью промежуточных звеньев (или среды), передающих взаимодействие от точки к точке, составляет сущность теории близкодействия. Распр. с конечной скоростью.

Теория прямого действия на расстоянии непосредственно через пустоту. Согласно этой теории действие передается мгновенно на сколь угодно большие расстояния.

Обе теории являются взаимно противоположными друг другу. Согласно теории действия на расстоянии одно тело действует на другое непосредственно через пустоту и это действие передается мгновенно.

Теория близкодействия утверждает, что любое взаимодействие осуществляется с помощью промежуточных агентов и распространяется с конечной скоростью.

Существования определенного процесса в пространстве между взаимодействующими телами, который длится конечное время, - вот главное, что отличает теорию близкодействия от теории действия на расстоянии.

Согласно идее Фарадея электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот. По мере удаления от заряда поле ослабевает.

Электромагнитные взаимодействия должны распространятся в пространстве с конечной скоростью.

Электрическое поле существует реально, его свойства можно исследовать опытным путем, но мы не можем сказать из чего это поле состоит.

О природе электрического поля можно сказать, что поле материально; оно сущ. независимо от нас, от наших знаний о нем;

Поле обладает определенными свойствами, которые не позволяют спутать его с чем-либо другим в окружающем мире;

Главное свойство электрического поля – действие его на электрические заряды с некоторой силой;

Электрическое поле неподвижных зарядов называют электростатическим . Оно не меняется со временем. Электростатическое поле создается только электрическими зарядами. Оно существует в пространстве, окружающем эти заряды, и неразрывно с ним связано.

Напряженность электрического поля.

Отношение силы, действующей на помещенный в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля.

Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду.


Напряженность поля точечного заряда.

.

Модуль напряженности поля точечного заряда q o на расстоянии r от него равен:

.

Если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна:

СИЛОВЫЕ ЛИНИИ ЭЛЕКТРИЧЕСКОГО ПОЛ.

НАПРЯЖЕННОСТЬ ПОЛЯ ЗАРЯЖЕННОГО ШАРА

Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным.

Густота силовых линий больше вблизи заряженных тел, где напряженность поля также больше.

-напряженность поля точечного заряда.

Внутри проводящего шара (r > R) напряженность поля равна нулю.

ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ.

В проводниках имеются заряженные частицы, способные перемещаться внутри проводника под влиянием электрического поля. Заряды этих частиц называют свободными зарядами.

Электростатического поля внутри проводника нет. Весь статический заряд проводника сосредоточен на его поверхности. Заряды в проводнике могут располагаться только на его поверхности.

Электростатика изучает свойства и взаимодействия зарядов, которые являются неподвижными в той системе отсчета, в которой они рассматриваются.

В природе есть всего два типа электрических зарядов – отрицательные и положительные. Положительный заряд может возникать на стеклянной палочке, натертой кожей, а отрицательный – на янтаре, натертом шерстяной тканью.

Известно, что все тела состоят из атомов. В свою очередь атом состоит из положительно заряженного ядра и электронов, которые вращаются вокруг него. Так как электроны имеют отрицательный заряд, а ядро положительный – то в целом атом является электрически нейтральным. При воздействии на него из вне, он может потерять один или несколько электронов и превратится в положительно заряженный ион. В случае, если атом (или молекула), присоединит к себе дополнительный электрон, то он превратится в отрицательный ион.

Таким образом, электрический заряд может существовать в виде отрицательных или положительных ионов и электронов. Существует один род «свободного электричества» — отрицательные электроны. Поэтому, если какое-то тело имеет положительный заряд – у него недостаточно электронов, а если отрицательный – то избыток.

Электрические свойства любого вещества обусловлены его атомным строением. Атомы могут терять даже по несколько электронов, в таком случае их называют многократно ионизированными. Из протонов и нейтронов состоит ядро атома. Каждый протон несет заряд, который равен заряду электрона, но противоположен ему по знаку. Нейтроны – это электрически нейтральные частицы (не имеет электрического заряда).

Помимо протонов и электронов, электрическим зарядом обладают и другие элементарные частицы. Электрический заряд – неотъемлемая часть элементарных частиц.

Наименьшим зарядом принято считать заряд, равный заряду электрона. Его еще называют элементарным зарядом, который равен 1,6·10 -19 Кл. Любой заряд кратен целому числу зарядов электрона. Поэтому электризация тела не может происходить непрерывно, а только ступенями (дискретно), на величину заряда электрона.

Если положительно заряженное тело начать перезаряжать (заряжать отрицательным электричеством), то его заряд не изменится мгновенно, а сначала уменьшится до нуля, и только потом приобретет отрицательный потенциал. Отсюда можно сделать вывод, что они компенсируют друг друга. Данный факт привел ученых к выводу, что в «незаряженных» телах всегда имеются заряды положительных и отрицательных знаков, которые содержатся в таких количествах, что их действие полностью компенсирует друг друга.

При электризации трением происходит разделение отрицательных и положительных «элементов», содержащихся в «незаряженном теле». В результате перемещения отрицательных элементов тела (электронов) электризуются оба тела, причем одно из них отрицательно, а второе положительно. Количество «перетекаемых» от одного элемента к другому зарядов остается постоянным в течении всего процесса.

Отсюда можно сделать вывод, что заряды не создаются и не исчезают, а всего лишь «перетекают» от одного тела к другому или перемещаются внутри него. В этом и является сущность закона сохранения электрических зарядов. При трении электризации подвержены многие материалы – эбонит, стекло и многие другие. Во многих отраслях промышленности (текстильная, бумажная и другие) наличие статического электричества представляет серьезную инженерную проблему, так как электризация элементов, вызванная трением бумаги, ткани или других продуктов производства о детали машин могут вызывать пожары и взрывы.

Закон сохранения заряда можно сформулировать короче – в изолированной системе алгебраическая сумма заряженных элементов остается постоянной:

Данный закон справедлив и при взаимных превращениях различных элементарных частиц, составляющих атом и ядро в целом.

Абсолютно всем известно такое понятие, как закон сохранения энергии . Энергия не возникает из ничего и не пропадает в никуда. Она только переходит из одной формы в другую.

Это основополагающий закон Вселенной. Именно благодаря этому закону Вселенная может существовать стабильно и продолжительно.

Формулировка закона сохранения заряда

Существует еще один подобный закон, который тоже является одним из основополагающих. Это закон сохранения электрического заряда.

В телах, которые находятся в покое и электрически нейтральны, заряды противоположных знаков равны по величине и взаимно компенсируют друг друга. Когда происходит электризация одних тел другими, заряды переходят с одного тела на другое, однако их общий суммарный заряд остается прежним.

В изолированной системе тел общий суммарный заряд всегда равен некоторой постоянной величине: q_1+q_2+⋯+q_n=const, где q_1, q_2, …, q_n заряды тел или частиц, входящих в систему.

Как же быть с превращением частиц?

Существует один момент, который может вызывать вопросы превращение частиц. Действительно, частицы могут рождать и исчезать, переходя при этом в другие частицы, излучение или энергию.

При этом такие процессы могут происходить как с нейтральными, так и с несущими заряд частицами. Как же быть в таком случае с законом сохранения заряда?

Оказалось, что рождение и исчезновение частиц может происходить только парно. То есть частицы переходят в иной тип существования, например, в излучение только парой, когда исчезают одновременно и положительная и отрицательная частицы.

При этом появляется некий вид излучения и определенная энергия. В обратном случае, когда под влиянием некоего излучения и потреблением энергии рождаются заряженные частицы, то они тоже рождаются только парой: положительная и отрицательная.

Соответственно, общий заряд новоявленной пары частиц будет равен нулю и закон сохранения заряда выполняется.

Экспериментальное подтверждение закона

Выполнение закона сохранения электрического заряда подтверждено экспериментально множество раз. Нет ни одного факта, который бы говорил об ином.

Поэтому, ученые полагают, что полный электрический заряд всех тел во Вселенной сохраняется неизменным и, скорее всего, равен нулю. То есть количество всех положительных зарядов равно количеству всех отрицательных зарядов.

Природа существования закона сохранения заряда пока непонятна. В частности, непонятно, почему заряженные частицы рождаются и аннигилируют только парами.



Статьи по теме: